Control of Redundant Joint Structures Using Image Information During the Tracking of Non-Smooth Trajectories

Visual information is increasingly being used in a great number of applications in order to perform the guidance of joint structures. This paper proposes an image-based controller which allows the joint structure guidance when its number of degrees of freedom is greater than the required for the developed task. In this case, the controller solves the redundancy combining two different tasks: the primary task allows the correct guidance using image information, and the secondary task determines the most adequate joint structure posture solving the possible joint redundancy regarding the performed task in the image space. The method proposed to guide the joint structure also employs a smoothing Kalman filter not only to determine the moment when abrupt changes occur in the tracked trajectory, but also to estimate and compensate these changes using the proposed filter. Furthermore, a direct visual control approach is proposed which integrates the visual information provided by this smoothing Kalman filter. This last aspect permits the correct tracking when noisy measurements are obtained. All the contributions are integrated in an application which requires the tracking of the faces of Asperger children.

[1]  Laxmidhar Behera,et al.  Visual motor control of a 7DOF redundant manipulator using redundancy preserving learning network , 2009, Robotica.

[2]  Jorge Pomares,et al.  Movement-flow-based visual servoing and force control fusion for Manipulation Tasks in unstructured environments , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[3]  Sarp Erturk,et al.  Real-Time Digital Image Stabilization , 2002 .

[4]  Andreas Ernst,et al.  A Modular Framework to Detect and Analyze Faces for Audience Measurement Systems , 2009, GI Jahrestagung.

[5]  P. Abbeel,et al.  Kalman filtering , 2020, IEEE Control Systems Magazine.

[6]  Axel Pinz,et al.  A Flexible Software Architecture for Hybrid Tracking , 2004 .

[7]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[8]  Jorge Pomares,et al.  Direct Visual Servoing to Track Trajectories in Human-Robot Cooperation , 2011 .

[9]  Jorge Pomares,et al.  A Multi-Sensorial Hybrid Control for Robotic Manipulation in Human-Robot Workspaces , 2011, Sensors.

[10]  Denis Pomorski,et al.  GPS/IMU data fusion using multisensor Kalman filtering: introduction of contextual aspects , 2006, Inf. Fusion.

[11]  Geraldo F. Silveira,et al.  Direct Visual Servoing: Vision-Based Estimation and Control Using Only Nonmetric Information , 2012, IEEE Transactions on Robotics.

[12]  Sarp Erturk,et al.  Real-Time Digital Image Stabilization Using Kalman Filters , 2002 .

[13]  Javier Ruiz-del-Solar,et al.  Human Detection and Identification by Robots Using Thermal and Visual Information in Domestic Environments , 2011, Journal of Intelligent & Robotic Systems.

[14]  François Chaumette,et al.  Visual servo control. I. Basic approaches , 2006, IEEE Robotics & Automation Magazine.

[15]  Chien Chern Cheah,et al.  Adaptive Vision based Tracking Control of Robots with Uncertainty in Depth Information , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[16]  O. Sawodny,et al.  Passivity-based dynamic visual feedback control of manipulators with kinematic redundancy , 2005, Proceedings of 2005 IEEE Conference on Control Applications, 2005. CCA 2005..

[17]  Nicolas Mansard,et al.  A new redundancy formalism for avoidance in visual servoing , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[18]  Jorge Pomares,et al.  Inclusion of immersive virtual learning environments and visual control systems to support the learning of students with Asperger syndrome , 2013, Comput. Educ..

[19]  Seth Hutchinson,et al.  Visual Servo Control Part I: Basic Approaches , 2006 .

[20]  Michel Dhome,et al.  Outdoor autonomous navigation using monocular vision , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[21]  Alexander Ferrein,et al.  Caesar: an intelligent domestic service robot , 2012, Intell. Serv. Robotics.

[22]  François Chaumette,et al.  Path planning for robust image-based control , 2002, IEEE Trans. Robotics Autom..

[23]  Ruben Garrido,et al.  Stable Visual PID Control of Redundant Planar Parallel Robots , 2011 .

[24]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[25]  Giuseppe Oriolo,et al.  Visual servoing with exploitation of redundancy: An experimental study , 2008, 2008 IEEE International Conference on Robotics and Automation.

[26]  R. Garrido,et al.  Visual PID Control of a Redundant Planar Parallel Robot , 2011 .

[27]  Vincenzo Lippiello,et al.  VISUAL MOTION TRACKING WITH FULL ADAPTIVE EXTENDED KALMAN FILTER: AN EXPERIMENTAL STUDY , 2005 .

[28]  Eric Foxlin,et al.  Pedestrian tracking with shoe-mounted inertial sensors , 2005, IEEE Computer Graphics and Applications.

[29]  Jorge Pomares,et al.  Direct visual servo control of a robot to track trajectories in supervision tasks , 2010, 2010 11th International Conference on Control Automation Robotics & Vision.

[30]  Peter H. Veltink,et al.  Ambulatory Position and Orientation Tracking Fusing Magnetic and Inertial Sensing , 2007, IEEE Transactions on Biomedical Engineering.

[31]  Muhammad Bilal Farooq,et al.  Hybrid force/position control scheme for flexible joint robot with friction between and the end-effector and the environment , 2008 .

[32]  Massimo Bertozzi,et al.  Vision-based intelligent vehicles: State of the art and perspectives , 2000, Robotics Auton. Syst..

[33]  Jorge Pomares,et al.  Survey of Visual and Force/Tactile Control of Robots for Physical Interaction in Spain , 2009, Sensors.