暂无分享,去创建一个
[1] I. Error Coefficients. Symmetric Integration Rules for Hypercubes , 2016 .
[2] Kenji Fukumizu,et al. Convergence guarantees for kernel-based quadrature rules in misspecified settings , 2016, NIPS.
[3] F. M. Larkin. Optimal approximation in Hilbert spaces with reproducing kernel functions , 1970 .
[4] H. Bungartz,et al. Sparse grids , 2004, Acta Numerica.
[5] Shmuel Rippa,et al. An algorithm for selecting a good value for the parameter c in radial basis function interpolation , 1999, Adv. Comput. Math..
[6] Simo Särkkä,et al. Classical quadrature rules via Gaussian processes , 2017, 2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP).
[7] Mark A. Girolami,et al. On the Sampling Problem for Kernel Quadrature , 2017, ICML.
[8] Markus Holtz,et al. Sparse Grid Quadrature in High Dimensions with Applications in Finance and Insurance , 2010, Lecture Notes in Computational Science and Engineering.
[9] A. O'Hagan,et al. Curve Fitting and Optimal Design for Prediction , 1978 .
[10] David L. Darmofal,et al. Higher-Dimensional Integration with Gaussian Weight for Applications in Probabilistic Design , 2005, SIAM J. Sci. Comput..
[11] John F. Monahan,et al. A stochastic algorithm for high-dimensional integrals over unbounded regions with Gaussian weight , 1999 .
[12] Kenji Fukumizu,et al. Convergence Analysis of Deterministic Kernel-Based Quadrature Rules in Misspecified Settings , 2017, Foundations of Computational Mathematics.
[13] Mark A. Girolami,et al. Bayesian Probabilistic Numerical Methods , 2017, SIAM Rev..
[14] Alan Genz,et al. Fully symmetric interpolatory rules for multiple integrals , 1986 .
[15] E. Novak,et al. Tractability of Multivariate Problems Volume II: Standard Information for Functionals , 2010 .
[16] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[17] Dongbin Xiu,et al. Stochastic Collocation Methods on Unstructured Grids in High Dimensions via Interpolation , 2012, SIAM J. Sci. Comput..
[18] K. Ritter,et al. The Curse of Dimension and a Universal Method For Numerical Integration , 1997 .
[19] E. Novak,et al. Tractability of Multivariate Problems , 2008 .
[20] K. Ritter,et al. On an interpolatory method for high dimensional integration , 1999 .
[21] C. D. Boor,et al. On multivariate polynomial interpolation , 1990 .
[22] Bernhard Schölkopf,et al. Kernel Mean Embedding of Distributions: A Review and Beyonds , 2016, Found. Trends Mach. Learn..
[23] Michael A. Osborne,et al. Probabilistic Integration: A Role for Statisticians in Numerical Analysis? , 2015 .
[24] Klaus Ritter,et al. Average-case analysis of numerical problems , 2000, Lecture notes in mathematics.
[25] A. Genz,et al. Fully symmetric interpolatory rules for multiple integrals over infinite regions with Gaussian weight , 1996 .
[26] S. Gupta,et al. Statistical decision theory and related topics IV , 1988 .
[27] N. Aronszajn. Theory of Reproducing Kernels. , 1950 .
[28] A. Berlinet,et al. Reproducing kernel Hilbert spaces in probability and statistics , 2004 .
[29] Michael A. Osborne,et al. Probabilistic numerics and uncertainty in computations , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[30] K. Ritter,et al. High dimensional integration of smooth functions over cubes , 1996 .
[31] Jouni Hartikainen,et al. On the relation between Gaussian process quadratures and sigma-point methods , 2015, 1504.05994.
[32] Frank Stenger,et al. Con-struction of fully symmetric numerical integration formulas , 1967 .
[33] Christopher K. I. Williams,et al. Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning) , 2005 .
[34] Michael A. Osborne,et al. Frank-Wolfe Bayesian Quadrature: Probabilistic Integration with Theoretical Guarantees , 2015, NIPS.
[35] David Duvenaud,et al. Optimally-Weighted Herding is Bayesian Quadrature , 2012, UAI.
[36] Jeremy Levesley,et al. Quasi-interpolation on a sparse grid with Gaussian , 2016 .
[37] J. N. Lyness. Symmetric integration rules for hypercubes. I. Error coefficients , 1965 .
[38] Jeremy Levesley,et al. Fast multilevel sparse Gaussian kernels for high-dimensional approximation and integration , 2015, 1501.03296.
[39] Carl E. Rasmussen,et al. Bayesian Monte Carlo , 2002, NIPS.
[40] S. Tezuka,et al. Toward real-time pricing of complex financial derivatives , 1996 .
[41] Klaus Ritter,et al. Bayesian numerical analysis , 2000 .
[42] A. Y. Bezhaev,et al. Cubature formulae on scattered meshes , 1991 .
[43] Ondřej Straka,et al. Gaussian Process Quadrature Moment Transform , 2017, IEEE Transactions on Automatic Control.
[44] Ondrej Straka,et al. Student-t process quadratures for filtering of non-linear systems with heavy-tailed noise , 2017, 2017 20th International Conference on Information Fusion (Fusion).
[45] Jean-François Richard,et al. Methods of Numerical Integration , 2000 .
[46] Michael I. Jordan,et al. Advances in Neural Information Processing Systems 30 , 1995 .
[47] Roman Garnett,et al. Sampling for Inference in Probabilistic Models with Fast Bayesian Quadrature , 2014, NIPS.
[48] Thomas Gerstner,et al. Numerical integration using sparse grids , 2004, Numerical Algorithms.
[49] F. M. Larkin. Gaussian measure in Hilbert space and applications in numerical analysis , 1972 .
[50] Alvise Sommariva,et al. Numerical Cubature on Scattered Data by Radial Basis Functions , 2005, Computing.
[51] R. Caflisch. Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.
[52] Barbara I. Wohlmuth,et al. Algorithm 847: Spinterp: piecewise multilinear hierarchical sparse grid interpolation in MATLAB , 2005, TOMS.
[53] Jochen Garcke,et al. A dimension adaptive sparse grid combination technique for machine learning , 2007 .
[54] M. Urner. Scattered Data Approximation , 2016 .
[55] Carl E. Rasmussen,et al. Active Learning of Model Evidence Using Bayesian Quadrature , 2012, NIPS.
[56] John Monahan,et al. Stochastic Integration Rules for Infinite Regions , 1998, SIAM J. Sci. Comput..
[57] Fazli Subhan,et al. Multilevel Sparse Kernel-Based Interpolation , 2012, SIAM J. Sci. Comput..
[58] Jeremy Levesley,et al. Multilevel quasi-interpolation on a sparse grid with the Gaussian , 2017, Numerical Algorithms.
[59] K. Ritter,et al. Simple Cubature Formulas with High Polynomial Exactness , 1999 .
[60] Ronald Cools,et al. Constructing cubature formulae: the science behind the art , 1997, Acta Numerica.
[61] Gregory E. Fasshauer,et al. On choosing “optimal” shape parameters for RBF approximation , 2007, Numerical Algorithms.