Evidence for different episodes of aeolian construction and a new type of wind streak in the 2016 ExoMars landing ellipse in Meridiani Planum, Mars

We present evidence for a complex, multigenerational bed form pattern and a new type of wind streak (the ripple streak) in the landing site ellipse of the 2016 ExoMars Entry descent and landing Demonstrator Module (EDM) in Meridiani Planum (Mars). We identified three main groups of bright-toned bed forms. Population 3, represented by NE-SW trending bed forms located inside craters, was emplaced by winds coming from the NW or the SE. Population 2, emplaced by strong easterlies, formed by intracrater transverse aeolian ridges (TARs) and N-S trending megaripples (plains ripples). Population 1 consists of a relict bed form pattern emplaced by winds coming from the north or south. Alternatively, population 1 can represent a sand ribbon pattern that formed together with the plain ripples. We also report the presence of a new type of wind streak, the ripple streak, which is formed by the population 2 bed forms clustered in the wake zone of impact craters. Based on the results of this work, we now know the EDM module is set to land in a complex aeolian environment. Data from the Dust Characterization, Risk Assessment, and Environment Analyser on the Martian Surface onboard the EDM can help to better decipher the wind regime in Meridiani Planum.

[1]  Nicholas Lancaster,et al.  Geomorphology of Desert Dunes , 1995 .

[2]  J. Grotzinger,et al.  Spatial grain size sorting in eolian ripples and estimation of wind conditions on planetary surfaces: Application to Meridiani Planum, Mars , 2006 .

[3]  Paul E. Geissler,et al.  Bedform migration on Mars: Current results and future plans , 2013 .

[4]  T. Michaels,et al.  Interpretation of the complex dune morphology on Mars: dune activity, modelling and a terrestrial analogue , 2012 .

[5]  T. Michaels,et al.  Orbital observations of contemporary dune activity in Endeavor crater, Meridiani Planum, Mars , 2011 .

[6]  William H. Farrand,et al.  Overview of the Opportunity Mars Exploration Rover mission to Meridiani Planum: Eagle crater to Purgatory ripple , 2006 .

[7]  J. Milana Largest wind ripples on Earth , 2009 .

[8]  J. R. Allen,et al.  Current Ripples : their relation to patterns of water and sediment motion , 1968 .

[9]  G. Kocurek,et al.  BEDFORM SPACING FROM DEFECT DYNAMICS , 1999 .

[10]  R. Kirk,et al.  High-resolution topomapping of candidate MER landing sites with Mars Orbiter Camera narrow-angle images , 2003 .

[11]  K Davis,et al.  Localization and Physical Property Experiments Conducted by Opportunity at Meridiani Planum , 2004, Science.

[12]  P. Gierasch,et al.  Wind streaks on Mars: Meteorological control of occurence and mode of formation , 1981 .

[13]  Larry W. Lake,et al.  Pattern analysis of dune‐field parameters , 2006 .

[14]  Alfred S. McEwen,et al.  Constraints on ripple migration at Meridiani Planum from Opportunity and HiRISE observations of fresh craters , 2010 .

[15]  B. Tucholke Origin of longitudinal triangular ripples on the Nova Scotian continental rise , 1982, Nature.

[16]  J. Cooper,et al.  The occurrence and formation of ladderback ripples in subtidal, shallow-marine sands, Zululand, South Africa , 1989 .

[17]  James R. Zimbelman,et al.  Transverse Aeolian Ridges (TARs) on Mars , 2008 .

[18]  L. V. Straaten Longitudinal ripple marks in mud and sand , 1951 .

[19]  G. Kocurek,et al.  Origin of a complex and spatially diverse dune-field pattern, Algodones, southeastern California , 2008 .

[20]  M. Malin,et al.  The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission , 2004 .

[21]  M A Alam,et al.  Observation of a strongly nested Fermi surface in the shape-memory alloy Ni0.62Al0.38. , 2006, Physical review letters.

[22]  Jeffrey R. Johnson,et al.  Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars , 2005 .

[23]  A. Knoll,et al.  Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum, Mars , 2005 .

[24]  Linda C. Kah,et al.  MAHLI at the Rocknest sand shadow: Science and science‐enabling activities , 2013 .

[25]  Paul E. Geissler,et al.  Active aeolian processes on Mars: A regional study in Arabia and Meridiani Terrae , 2011 .

[26]  J. G. Ward,et al.  Nature and Origin of the Hematite-Bearing Plains of Terra Meridiani Based on Analyses of Orbital and Mars Exploration Rover Data Sets , 2006 .

[27]  D. Ming,et al.  Aeolian processes at the Mars Exploration Rover Meridiani Planum landing site , 2005, Nature.

[28]  Alexander G. Hayes,et al.  Reconstruction of eolian bed forms and paleocurrents from cross‐bedded strata at Victoria Crater, Meridiani Planum, Mars , 2010 .

[29]  N. Bridges,et al.  Shifting sands on Mars: insights from tropical intra‐crater dunes , 2013 .

[30]  Jeffrey R. Johnson,et al.  Gone with the wind: Eolian erasure of the Mars Rover tracks , 2010 .

[31]  N. Lancaster,et al.  Development of spatially diverse and complex dune‐field patterns: Gran Desierto Dune Field, Sonora, Mexico , 2006 .

[32]  Jeffrey R. Johnson,et al.  Persistent aeolian activity at Endeavour crater, Meridiani Planum, Mars; new observations from orbit and the surface , 2014 .

[33]  T. Michaels,et al.  Late Amazonian aeolian features, gradation, wind regimes, and Sediment State in the Vicinity of the Mars Exploration Rover Opportunity, Meridiani Planum, Mars , 2015 .

[34]  P. Schipani,et al.  The DREAMS experiment on the ExoMars 2016 mission for the study of Martian environment during the dust storm season , 2014, 2014 IEEE Metrology for Aerospace (MetroAeroSpace).

[35]  J. Veverka,et al.  Classification of wind streaks on Mars , 1981 .

[36]  J. Grant,et al.  Erosion rates at the Mars Exploration Rover landing sites and long‐term climate change on Mars , 2006 .

[37]  John F. McCauley,et al.  Remote Sensing Field Guide - Desert , 1991 .

[38]  Robert M. Haberle,et al.  Orbital change experiments with a Mars general circulation model , 2003 .

[39]  Scot C. R. Rafkin,et al.  The Mars Regional Atmospheric Modeling System: Model Description and Selected Simulations , 2001 .

[40]  P. Geissler The birth and death of transverse aeolian ridges on Mars , 2014 .

[41]  D. Vaz,et al.  Mapping and characterization of small-scale aeolian structures on Mars: An example from the MSL landing site in Gale Crater , 2014 .

[42]  C. Okubo Structural geology of Amazonian-aged layered sedimentary deposits in southwest Candor Chasma, Mars , 2010 .

[43]  J. Reddering Subtidal occurrences of ladder‐back ripples: their significance in palaeo‐environmental reconstruction , 1987 .

[44]  R. S. W. van de Wal,et al.  Recovering lateral variations in lithospheric strength from bedrock motion data using a coupled ice sheet‐lithosphere model , 2006 .

[45]  William H. Farrand,et al.  Opportunity Mars Rover mission: Overview and selected results from Purgatory ripple to traverses to Endeavour crater , 2011 .

[46]  N. Lancaster,et al.  Extraterrestrial dunes: An introduction to the special issue on planetary dune systems , 2010 .

[47]  R. Bagnold,et al.  The Physics of Blown Sand and Desert Dunes , 1941 .

[48]  R. Phillips,et al.  Mars' volatile and climate history , 2001, Nature.

[49]  M. Seppälä,et al.  Wind Tunnel Studies of Ripple Formation , 1978 .

[50]  N. Lancaster,et al.  Aeolian system sediment state: theory and Mojave Desert Kelso dune field example , 1999 .

[51]  G. Kocurek,et al.  Aeolian dune field self-organization – implications for the formation of simple versus complex dune-field patterns , 2005 .

[52]  M. Broxton,et al.  Ames Stereo Pipeline, NASA's Open Source Automated Stereogrammetry Software , 2010 .

[53]  A. McEwen,et al.  Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE) , 2007 .

[54]  P. Claudin,et al.  Aeolian sand ripples: experimental study of fully developed states. , 2005, Physical Review Letters.

[55]  H. Tsoar Linear dunes - forms and formation , 1989 .

[56]  M. Richardson,et al.  Martian surface winds: Insensitivity to orbital changes and implications for aeolian processes , 2001 .

[57]  Aymeric-Pierre B. Peyret,et al.  Dune field pattern formation and recent transporting winds in the Olympia Undae Dune Field, north polar region of Mars , 2010 .

[58]  N. Bridges,et al.  Gravel-mantled megaripples of the Argentinean Puna: A model for their origin and growth with implications for Mars , 2013 .

[59]  J. Cooper,et al.  High resolution measured and modelled three-dimensional airflow over a coastal bowl blowout , 2012 .

[60]  Jeffrey R. Johnson,et al.  Soil grain analyses at Meridiani Planum, Mars , 2006 .

[61]  G. Komatsu,et al.  The influence of local topography for wind direction on Mars: two examples of dune fields in crater basins , 2012 .

[62]  H. Tsoar,et al.  Types of Aeolian Sand Dunes and Their Formation , 2001 .

[63]  R. Jaumann,et al.  Absolute dune ages and implications for the time of formation of gullies in Nirgal Vallis, Mars , 2004 .

[64]  T. J. McCoy,et al.  Exploration of Victoria Crater by the Mars Rover Opportunity , 2009, Science.

[65]  G. Kocurek,et al.  Aeolian dune-field pattern boundary conditions , 2010 .

[66]  J. Head,et al.  A progression of induration in Medusae Fossae Formation transverse aeolian ridges: evidence for ancient aeolian bedforms and extensive reworking , 2012 .

[67]  Joshua Lederberg,et al.  Variable features on Mars: Preliminary mariner 9 television results , 1972 .

[68]  R. Jaumann,et al.  Dark aeolian sediments in Martian craters: Composition and sources , 2011 .