A first-order integer-valued autoregressive process with zero-modified Poisson-Lindley distributed innovations

In this paper, we introduce a first-order integer-valued autoregressive process with zero-modified Poisson-Lindley distributed innovations based on the binomial thinning operator. Some statistical ...

[1]  M. E. Ghitany,et al.  Zero-truncated Poisson-Lindley distribution and its application , 2008, Math. Comput. Simul..

[2]  Eddie McKenzie,et al.  Discrete variate time series , 2003 .

[3]  Hassan S. Bakouch,et al.  A new geometric first-order integer-valued autoregressive (NGINAR(1)) process , 2009 .

[4]  M. Kachour,et al.  A p‐Order signed integer‐valued autoregressive (SINAR(p)) model , 2011 .

[5]  Somnath Datta,et al.  First-order random coefficient integer-valued autoregressive processes , 2007 .

[6]  M. E. Ghitany,et al.  Estimation methods for the discrete Poisson–Lindley distribution , 2009 .

[7]  Mohamed Alosh,et al.  First order autoregressive time series with negative binomial and geometric marginals , 1992 .

[8]  Christian H. Weiß,et al.  Compound Poisson INAR(1) processes: Stochastic properties and testing for overdispersion , 2014, Comput. Stat. Data Anal..

[9]  C. Lai,et al.  First‐order integer valued AR processes with zero inflated poisson innovations , 2012 .

[10]  M. Bourguignon,et al.  An INAR(1) model with Poisson-Lindley innovations , 2018 .

[11]  M. Bourguignon,et al.  Zero-Modified Poisson-Lindley distribution with applications in zero-inflated and zero-deflated count data , 2017, 1712.04088.

[12]  W. Barreto‐Souza,et al.  Inferential aspects of the zero-inflated Poisson INAR(1) process , 2019, Applied Mathematical Modelling.

[13]  E. McKenzie,et al.  Autoregressive moving-average processes with negative-binomial and geometric marginal distributions , 1986, Advances in Applied Probability.

[14]  David Moriña,et al.  A statistical model for hospital admissions caused by seasonal diseases , 2011, Statistics in medicine.

[15]  R. Keith Freeland,et al.  True integer value time series , 2010 .

[16]  H. Bakouch,et al.  Poisson–Lindley INAR(1) model with applications , 2018 .

[17]  Spyros Makridakis,et al.  Accuracy measures: theoretical and practical concerns☆ , 1993 .

[18]  Wagner Barreto-Souza Mixed Poisson INAR(1) processes , 2017 .

[19]  M. Sankaran,et al.  275. Note: The Discrete Poisson-Lindley Distribution , 1970 .

[20]  Wagner Barreto‐Souza Zero‐Modified Geometric INAR(1) Process for Modelling Count Time Series with Deflation or Inflation of Zeros , 2015 .

[21]  Fw Fred Steutel,et al.  Discrete analogues of self-decomposability and stability , 1979 .

[22]  B. Kedem,et al.  Regression Theory for Categorical Time Series , 2003 .

[23]  M. Bourguignon,et al.  Extended Poisson INAR(1) processes with equidispersion, underdispersion and overdispersion , 2017, 1711.10940.

[24]  C. Lai,et al.  Integer Valued AR(1) with Geometric Innovations , 2012 .

[25]  R. Lund,et al.  Multivariate integer-valued time series with flexible autocovariances and their application to major hurricane counts , 2018 .

[26]  Mohamed Alosh,et al.  FIRST‐ORDER INTEGER‐VALUED AUTOREGRESSIVE (INAR(1)) PROCESS , 1987 .