Application of entropies for automated diagnosis of epilepsy using EEG signals: A review

Epilepsy can be detected using EEG signals.The entropy indicates the complexity of the EEG signal.Various entropies are used to diagnose epilepsy.Unique ranges for various entropies are proposed. Epilepsy is the neurological disorder of the brain which is difficult to diagnose visually using Electroencephalogram (EEG) signals. Hence, an automated detection of epilepsy using EEG signals will be a useful tool in medical field. The automation of epilepsy detection using signal processing techniques such as wavelet transform and entropies may optimise the performance of the system. Many algorithms have been developed to diagnose the presence of seizure in the EEG signals. The entropy is a nonlinear parameter that reflects the complexity of the EEG signal. Many entropies have been used to differentiate normal, interictal and ictal EEG signals. This paper discusses various entropies used for an automated diagnosis of epilepsy using EEG signals. We have presented unique ranges for various entropies used to differentiate normal, interictal, and ictal EEG signals and also ranked them depending on the ability to discrimination ability of three classes. These entropies can be used to classify the different stages of epilepsy and can also be used for other biomedical applications.

[1]  M. L. Dewal,et al.  Epileptic seizure detection using DWT based fuzzy approximate entropy and support vector machine , 2014, Neurocomputing.

[2]  Brian Litt,et al.  Detection of seizure precursors from depth-EEG using a sign periodogram transform , 2003, IEEE Transactions on Biomedical Engineering.

[3]  A. Plastino,et al.  Human brain dynamics: the analysis of EEG signals with Tsallis information measure , 1999 .

[4]  N. Birbaumer,et al.  Permutation entropy to detect vigilance changes and preictal states from scalp EEG in epileptic patients. A preliminary study , 2008, Neurological Sciences.

[5]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[6]  Badong Chen,et al.  Weighted-permutation entropy: a complexity measure for time series incorporating amplitude information. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  Don S. Lemons A Student's Guide to Entropy , 2013 .

[8]  G. Lightbody,et al.  A comparison of quantitative EEG features for neonatal seizure detection , 2008, Clinical Neurophysiology.

[9]  J. Richman,et al.  Physiological time-series analysis using approximate entropy and sample entropy. , 2000, American journal of physiology. Heart and circulatory physiology.

[10]  Qinghua Hu,et al.  Fuzzy entropy based Max-Relevancy and Min-Redundancy feature selection , 2008, 2008 IEEE International Conference on Granular Computing.

[11]  M.R. Raghuveer,et al.  Bispectrum estimation: A digital signal processing framework , 1987, Proceedings of the IEEE.

[12]  Christopher J. James,et al.  Detection of epileptiform activity in the electroencephalogram using artificial neural networks , 1997 .

[13]  N. Thakor,et al.  Time-Dependent Entropy Estimation of EEG Rhythm Changes Following Brain Ischemia , 2003, Annals of Biomedical Engineering.

[14]  Daniel Rivero,et al.  Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks , 2010, Journal of Neuroscience Methods.

[15]  Weidong Zhou,et al.  Epileptic EEG classification based on extreme learning machine and nonlinear features , 2011, Epilepsy Research.

[16]  Elif Derya Übeyli Combined neural network model employing wavelet coefficients for EEG signals classification , 2009, Digit. Signal Process..

[17]  Kemal Polat,et al.  Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform , 2007, Appl. Math. Comput..

[18]  U. Rajendra Acharya,et al.  Automated Diagnosis of epilepsy using CWT, HOS and Texture parameters , 2013, Int. J. Neural Syst..

[19]  Alberto Sonnino,et al.  The Rényi entropy of Lévy distribution , 2013 .

[20]  Shanbao Tong,et al.  Advances in quantitative electroencephalogram analysis methods. , 2004, Annual review of biomedical engineering.

[21]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[22]  U. Rajendra Acharya,et al.  Application of Non-Linear and Wavelet Based Features for the Automated Identification of Epileptic EEG signals , 2012, Int. J. Neural Syst..

[23]  A. Aarabi,et al.  A fuzzy rule-based system for epileptic seizure detection in intracranial EEG , 2009, Clinical Neurophysiology.

[24]  K. M. Kelly,et al.  Assessment of a scalp EEG-based automated seizure detection system , 2010, Clinical Neurophysiology.

[25]  Gilson A. Giraldi,et al.  Computing the q-index for Tsallis Nonextensive Image Segmentation , 2009, 2009 XXII Brazilian Symposium on Computer Graphics and Image Processing.

[26]  Natarajan Sriraam,et al.  Entropies based detection of epileptic seizures with artificial neural network classifiers , 2010, Expert Syst. Appl..

[27]  J. Zbilut,et al.  Embeddings and delays as derived from quantification of recurrence plots , 1992 .

[28]  Hisashi Kobayashi,et al.  Probability, Random Processes, and Statistical Analysis: Applications to Communications, Signal Processing, Queueing Theory and Mathematical Finance , 2012 .

[29]  Julius Georgiou,et al.  Detection of epileptic electroencephalogram based on Permutation Entropy and Support Vector Machines , 2012, Expert Syst. Appl..

[30]  U. Rajendra Acharya,et al.  Author's Personal Copy Biomedical Signal Processing and Control Automated Diagnosis of Epileptic Eeg Using Entropies , 2022 .

[31]  K Lehnertz,et al.  Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  Yi Zhou,et al.  Approximate entropy and support vector machines for electroencephalogram signal classification , 2013, Neural regeneration research.

[33]  J. Crutchfield,et al.  Measures of statistical complexity: Why? , 1998 .

[34]  C. M. Lim,et al.  Cardiac state diagnosis using higher order spectra of heart rate variability , 2008, Journal of medical engineering & technology.

[35]  J. Kurths,et al.  Recurrence-plot-based measures of complexity and their application to heart-rate-variability data. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  Pietro Liò,et al.  A new approach for epileptic seizure detection: sample entropy based feature extraction and extreme learning machine , 2010 .

[37]  Bart Kosko,et al.  Fuzzy entropy and conditioning , 1986, Inf. Sci..

[38]  Sheng-Fu Liang,et al.  Combination of EEG Complexity and Spectral Analysis for Epilepsy Diagnosis and Seizure Detection , 2010, EURASIP J. Adv. Signal Process..

[39]  N. Thakor,et al.  Parameterized entropy analysis of EEG following hypoxic–ischemic brain injury , 2003 .

[40]  Chia-Ping Shen,et al.  A Physiology-Based Seizure Detection System for Multichannel EEG , 2013, PloS one.

[41]  W. Art Chaovalitwongse,et al.  Adaptive epileptic seizure prediction system , 2003, IEEE Transactions on Biomedical Engineering.

[42]  Abdulhamit Subasi,et al.  EEG signal classification using wavelet feature extraction and a mixture of expert model , 2007, Expert Syst. Appl..

[43]  Eric J. Heikkila,et al.  Adjusting Spatial-Entropy Measures for Scale and Resolution Effects , 2006 .

[44]  U. Rajendra Acharya,et al.  Application of Recurrence Quantification Analysis for the Automated Identification of Epileptic EEG Signals , 2011, Int. J. Neural Syst..

[45]  U. Rajendra Acharya,et al.  Application of Higher Order Spectra to Identify Epileptic EEG , 2011, Journal of Medical Systems.

[46]  U. Rajendra Acharya,et al.  Application of Empirical Mode Decomposition (EMD) for Automated Detection of epilepsy using EEG signals , 2012, Int. J. Neural Syst..

[47]  Niels Wessel,et al.  Practical considerations of permutation entropy , 2013, The European Physical Journal Special Topics.

[48]  T. Inouye,et al.  Quantification of EEG irregularity by use of the entropy of the power spectrum. , 1991, Electroencephalography and clinical neurophysiology.

[49]  Max E. Valentinuzzi,et al.  Artifact removal from EEG signals using adaptive filters in cascade , 2007 .

[50]  Bijaya K. Panigrahi,et al.  Discrete harmony search based expert model for epileptic seizure detection in electroencephalography , 2012, Expert Syst. Appl..

[51]  Ali Karimpour,et al.  Fast and Robust Detection of Epilepsy in Noisy EEG Signals Using Permutation Entropy , 2007, 2007 IEEE 7th International Symposium on BioInformatics and BioEngineering.

[52]  Dimitrios I. Fotiadis,et al.  Automatic Seizure Detection Based on Time-Frequency Analysis and Artificial Neural Networks , 2007, Comput. Intell. Neurosci..

[53]  Fryderyk Falniowski On the Connections of Generalized Entropies With Shannon and Kolmogorov-Sinai Entropies , 2014, Entropy.

[54]  Jing Li,et al.  Using Permutation Entropy to Measure the Changes in EEG Signals During Absence Seizures , 2014, Entropy.

[55]  R. Quiroga,et al.  Kulback-Leibler and renormalized entropies: applications to electroencephalograms of epilepsy patients. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[56]  G. Ouyang,et al.  Predictability analysis of absence seizures with permutation entropy , 2007, Epilepsy Research.

[57]  B. Pompe,et al.  Permutation entropy: a natural complexity measure for time series. , 2002, Physical review letters.

[58]  Junjie Chen,et al.  The detection of epileptic seizure signals based on fuzzy entropy , 2015, Journal of Neuroscience Methods.

[59]  J. Röschke,et al.  Discrimination of sleep stages: a comparison between spectral and nonlinear EEG measures. , 1996, Electroencephalography and clinical neurophysiology.

[60]  Adam A. Margolin,et al.  Assessing the clinical utility of cancer genomic and proteomic data across tumor types , 2014, Nature Biotechnology.

[61]  U. Rajendra Acharya,et al.  Entropies for detection of epilepsy in EEG , 2005, Comput. Methods Programs Biomed..

[62]  Dimitrios I. Fotiadis,et al.  Epileptic Seizure Detection in EEGs Using Time–Frequency Analysis , 2009, IEEE Transactions on Information Technology in Biomedicine.

[63]  Konstantinos G. Derpanis,et al.  The Bhattacharyya Measure , 2008 .

[64]  S M Pincus,et al.  Approximate entropy as a measure of system complexity. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[65]  Massimiliano Zanin,et al.  Permutation Entropy and Its Main Biomedical and Econophysics Applications: A Review , 2012, Entropy.

[66]  F. Mormann,et al.  Seizure prediction: the long and winding road. , 2007, Brain : a journal of neurology.

[67]  C. L. Nikias,et al.  Higher-order spectra analysis : a nonlinear signal processing framework , 1993 .

[68]  Christian Cachin,et al.  Smooth Entropy and Rényi Entropy , 1997, EUROCRYPT.

[69]  J. Crowcroft,et al.  Automatic epileptic seizure detection in EEGs based on optimized sample entropy and extreme learning machine , 2012, Journal of Neuroscience Methods.

[70]  U. Rajendra Acharya,et al.  Application of Entropy Measures on Intrinsic Mode Functions for the Automated Identification of Focal Electroencephalogram Signals , 2015, Entropy.

[71]  W. Hauser,et al.  The descriptive epidemiology of epilepsy—A review , 2009, Epilepsy Research.

[72]  Duoqian Miao,et al.  Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection , 2011, Expert Syst. Appl..

[73]  M. L. Dewal,et al.  Epileptic seizures detection in EEG using DWT-based ApEn and artificial neural network , 2012, Signal, Image and Video Processing.

[74]  P. K. Kulkarni,et al.  EEG signal classification for Epilepsy Seizure Detection using Improved Approximate Entropy , 2013 .

[75]  A J Gabor,et al.  Seizure detection using a self-organizing neural network: validation and comparison with other detection strategies. , 1998, Electroencephalography and clinical neurophysiology.

[76]  Elif Derya Übeyli,et al.  Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients , 2005, Journal of Neuroscience Methods.

[77]  Sankar K. Pal,et al.  Handbook on Soft Computing for Video Surveillance , 2012 .

[78]  A. Schulze-Bonhage,et al.  Comparison of three nonlinear seizure prediction methods by means of the seizure prediction characteristic , 2004 .

[79]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[80]  H. Kantz,et al.  Nonlinear time series analysis , 1997 .

[81]  B. Wingeier,et al.  Automated seizure onset detection for accurate onset time determination in intracranial EEG , 2008, Clinical Neurophysiology.

[82]  Thasneem Fathima,et al.  Detection of Epileptic Seizure Event and Onset Using EEG , 2014, BioMed research international.

[83]  C. L. Nikias,et al.  Signal processing with higher-order spectra , 1993, IEEE Signal Processing Magazine.

[84]  E. Basar,et al.  Wavelet entropy: a new tool for analysis of short duration brain electrical signals , 2001, Journal of Neuroscience Methods.

[85]  J. Frost,et al.  A Multistage System for the Automated Detection of Epileptic Seizures in Neonatal Electroencephalography , 2009, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[86]  L M Hively,et al.  Detecting dynamical changes in time series using the permutation entropy. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[87]  V. Srinivasan,et al.  Approximate Entropy-Based Epileptic EEG Detection Using Artificial Neural Networks , 2007, IEEE Transactions on Information Technology in Biomedicine.

[88]  R. Harner,et al.  Patient-Specific Early Seizure Detection From Scalp Electroencephalogram , 2010, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[89]  J. D. Farmer,et al.  Information Dimension and the Probabilistic Structure of Chaos , 1982 .

[90]  Taeho Hwang,et al.  FiGS: a filter-based gene selection workbench for microarray data , 2010, BMC Bioinformatics.

[91]  C. M. Lim,et al.  Characterization of EEG - A comparative study , 2005, Comput. Methods Programs Biomed..

[92]  Hee Don Seo,et al.  Epileptic Spike Detection Using Continuous Wavelet Transforms and Artificial Neural Networks , 2010, Int. J. Wavelets Multiresolution Inf. Process..

[93]  P. Macklem,et al.  Complex systems and the technology of variability analysis , 2004, Critical Care.

[94]  U. Rajendra Acharya,et al.  Application of Intrinsic Time-Scale Decomposition (ITD) to EEG signals for Automated seizure Prediction , 2013, Int. J. Neural Syst..

[95]  U. Rajendra Acharya,et al.  AUTOMATIC IDENTIFICATION OF EPILEPTIC EEG SIGNALS USING NONLINEAR PARAMETERS , 2009 .

[96]  A. Aertsen,et al.  Detecting Epileptic Seizures in Long-term Human EEG: A New Approach to Automatic Online and Real-Time Detection and Classification of Polymorphic Seizure Patterns , 2008, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[97]  Didier Sornette,et al.  Beyond Shannon: Characterizing Internet Traffic with Generalized Entropy Metrics , 2009, PAM.

[98]  Hasan Ocak,et al.  Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy , 2009, Expert Syst. Appl..

[99]  C. M. Lim,et al.  Automatic identification of epileptic electroencephalography signals using higher-order spectra , 2009, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[100]  S. Pincus Approximate entropy (ApEn) as a complexity measure. , 1995, Chaos.