Accurate photometric redshift probability density estimation – method comparison and application
暂无分享,去创建一个
Eibe Frank | S. Seitz | D. Gruen | B. Hoyle | M. Rau | F. Brimioulle | O. Friedrich | E. Frank
[1] Robert P. W. Duin,et al. On the Choice of Smoothing Parameters for Parzen Estimators of Probability Density Functions , 1976, IEEE Transactions on Computers.
[2] D. W. Scott,et al. Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .
[3] Nick Kaiser,et al. Weak gravitational lensing of distant galaxies , 1992 .
[4] G. Celeux,et al. An entropy criterion for assessing the number of clusters in a mixture model , 1996 .
[5] N. Benı́tez. Bayesian Photometric Redshift Estimation , 1998, astro-ph/9811189.
[6] A. Pickles. A Stellar Spectral Flux Library: 1150–25000 Å , 1998 .
[7] Gérard Govaert,et al. An improvement of the NEC criterion for assessing the number of clusters in a mixture model , 1999, Pattern Recognit. Lett..
[8] A. J. Connolly,et al. Reconstructing Galaxy Spectral Energy Distributions from Broadband Photometry , 1999, astro-ph/9910389.
[9] E. al.,et al. The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.
[10] S.Cole,et al. The 2dF Galaxy Redshift Survey: spectra and redshifts , 2001, astro-ph/0106498.
[11] R. Bender,et al. The FORS Deep Field: Photometric Data and Photometric Redshifts , 2001 .
[12] M. Bartelmann,et al. Weak gravitational lensing , 2016, Scholarpedia.
[13] Luc De Raedt,et al. Machine Learning: ECML 2001 , 2001, Lecture Notes in Computer Science.
[14] Princeton University,et al. LSST: a complementary probe of dark energy , 2002 .
[15] Peter Stone,et al. Modeling Auction Price Uncertainty Using Boosting-based Conditional Density Estimation , 2002, ICML.
[16] Michigan.,et al. Estimating photometric redshifts with artificial neural networks , 2002, astro-ph/0203250.
[17] J. Peacock,et al. Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.
[18] Leo Breiman,et al. Random Forests , 2001, Machine Learning.
[19] Y. Mellier,et al. The VIRMOS deep imaging survey - I. Overview, survey strategy, and CFH12K observations , 2004 .
[20] Ofer Lahav,et al. ANNz: Estimating Photometric Redshifts Using Artificial Neural Networks , 2004 .
[21] THE DEEP GROTH STRIP GALAXY REDSHIFT SURVEY. III. REDSHIFT CATALOG AND PROPERTIES OF GALAXIES , 2004, astro-ph/0411128.
[22] Garth D. Illingworth,et al. The DEEP Groth Strip Survey. I. The Sample , 2005, astro-ph/0503376.
[23] B. Flaugher. The Dark Energy Survey , 2005 .
[24] John Ellis,et al. Int. J. Mod. Phys. , 2005 .
[25] B. Garilli,et al. Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey , 2006, astro-ph/0603217.
[26] Gérard Govaert,et al. Model-based cluster and discriminant analysis with the MIXMOD software , 2006, Comput. Stat. Data Anal..
[27] Nicolai Meinshausen,et al. Quantile Regression Forests , 2006, J. Mach. Learn. Res..
[28] G. Zamorani,et al. The Zurich Extragalactic Bayesian Redshift Analyzer and its first application: COSMOS , 2006 .
[29] Radford M. Neal. Pattern Recognition and Machine Learning , 2007, Technometrics.
[30] I. Smail,et al. The All-Wavelength Extended Groth Strip International Survey (AEGIS) Data Sets , 2006, astro-ph/0607355.
[31] Bin Wang,et al. Bandwidth Selection for Weighted Kernel Density Estimation , 2007, 0709.1616.
[32] A. Mazure,et al. The Vimos VLT deep survey Global properties of 20 000 galaxies in the IAB < 22.5 WIDE survey , 2008, 0804.4568.
[33] Huan Lin,et al. Estimating the redshift distribution of photometric galaxy samples , 2008 .
[34] S. J. Lilly,et al. Precision photometric redshift calibration for galaxy–galaxy weak lensing , 2007, 0709.1692.
[35] R. Bender,et al. Photometric redshifts for the CFHTLS-Wide , 2008, 0811.3211.
[36] Karl Glazebrook,et al. The WiggleZ Dark Energy Survey: survey design and first data release , 2009, 0911.4246.
[37] J. Leeuw,et al. Isotone Optimization in R: Pool-Adjacent-Violators Algorithm (PAVA) and Active Set Methods , 2009 .
[38] Takafumi Kanamori,et al. Nonparametric Conditional Density Estimation Using Piecewise-Linear Solution Path of Kernel Quantile Regression , 2009, Neural Computation.
[39] Huan Lin,et al. Estimating the redshift distribution of photometric galaxy samples – II. Applications and tests of a new method , 2008, 0801.3822.
[40] J. Frieman,et al. CROSS-CORRELATION WEAK LENSING OF SDSS GALAXY CLUSTERS. I. MEASUREMENTS , 2007, 0709.1153.
[41] Eibe Frank,et al. Conditional Density Estimation with Class Probability Estimators , 2009, ACML.
[42] P. A. R. Ade,et al. GALAXY CLUSTERS DISCOVERED WITH A SUNYAEV–ZEL'DOVICH EFFECT SURVEY , 2008, 0810.1578.
[43] Maya R. Gupta,et al. EM Demystified: An Expectation-Maximization Tutorial , 2010 .
[44] Takafumi Kanamori,et al. Least-Squares Conditional Density Estimation , 2010, IEICE Trans. Inf. Syst..
[45] D. Gerdes,et al. PHAT: PHoto-z Accuracy Testing , 2010, 1008.0658.
[46] J. Lesgourgues,et al. The Cosmic Linear Anisotropy Solving System (CLASS). Part II: Approximation schemes , 2011, 1104.2933.
[47] August E. Evrard,et al. Cosmological Parameters from Observations of Galaxy Clusters , 2011, 1103.4829.
[48] R. Nichol,et al. Euclid Definition Study Report , 2011, 1110.3193.
[49] P. A. R. Ade,et al. A SUNYAEV–ZEL'DOVICH-SELECTED SAMPLE OF THE MOST MASSIVE GALAXY CLUSTERS IN THE 2500 deg2 SOUTH POLE TELESCOPE SURVEY , 2011, 1101.1290.
[50] D. Wittman,et al. DISCOVERY OF A DISSOCIATIVE GALAXY CLUSTER MERGER WITH LARGE PHYSICAL SEPARATION , 2011, 1110.4391.
[51] S. Maddox,et al. Herschel-ATLAS : Multi-wavelength SEDs and physical properties of 250 μm selected galaxies at z <0.5 , 2012, 1208.3079.
[52] R. J. Wainscoat,et al. THE Pan-STARRS1 PHOTOMETRIC SYSTEM , 2012, 1203.0297.
[53] R. Bender,et al. PHOTOMETRIC REDSHIFTS AND SYSTEMATIC VARIATIONS IN THE SPECTRAL ENERGY DISTRIBUTIONS OF LUMINOUS RED GALAXIES FROM SDSS DR7 , 2013, 1303.3005.
[54] G. Zamorani,et al. The VIMOS Public Extragalactic Survey (VIPERS) - First Data Release of 57 204 spectroscopic measurements , 2013, 1310.1008.
[55] R. J. Brunner,et al. TPZ: photometric redshift PDFs and ancillary information by using prediction trees and random forests , 2013, 1303.7269.
[56] A. Fontana,et al. A Critical Assessment of Photometric Redshift Methods: A CANDELS Investigation , 2013, 1308.5353.
[57] S. Seitz,et al. Weak lensing analysis of RXC J2248.7−4431 , 2013, 1304.0764.
[58] Yannick Mellier,et al. CFHTLenS: combined probe cosmological model comparison using 2D weak gravitational lensing , 2012, 1212.3338.
[59] R. Nichol,et al. The VIMOS Public Extragalactic Redshift Survey (VIPERS) - an unprecedented view of galaxies and large-scale structure at 0.5 < z < 1.2 , 2013, 1303.2623.
[60] L. Costa,et al. Large-scale analysis of the SDSS-III DR8 photometric luminous galaxies angular correlation function , 2013, 1308.0630.
[61] R. Bender,et al. Dark matter halo properties from galaxy-galaxy lensing , 2013, 1303.6287.
[62] Yannick Mellier,et al. CFHTLenS tomographic weak lensing: quantifying accurate redshift distributions , 2012, 1212.3327.
[63] D. Burke,et al. Weighing the Giants – III. Methods and measurements of accurate galaxy cluster weak-lensing masses , 2012, 1208.0605.
[64] J. Koppenhoefer,et al. Weak lensing analysis of SZ-selected clusters of galaxies from the SPT and Planck surveys , 2013, 1310.6744.
[65] R Core Team,et al. R: A language and environment for statistical computing. , 2014 .
[66] R. Nichol,et al. Photometric redshift analysis in the Dark Energy Survey Science Verification data , 2014, 1406.4407.
[67] R. J. Brunner,et al. Sparse representation of photometric redshift probability density functions: preparing for petascale astronomy , 2014, 1404.6442.
[68] J. Weller,et al. Data augmentation for machine learning redshifts applied to Sloan Digital Sky Survey galaxies , 2015, 1501.06759.
[69] C. Bonnett. Using neural networks to estimate redshift distributions. An application to CFHTLenS , 2013, 1312.1287.
[70] Roman Zitlau,et al. Feature importance for machine learning redshifts applied to SDSS galaxies , 2014, 1410.4696.