Accurate photometric redshift probability density estimation – method comparison and application

We introduce an ordinal classification algorithm for photometric redshift estimation, which significantly improves the reconstruction of photometric redshift probability density functions (PDFs) for individual galaxies and galaxy samples. As a use case we apply our method to CFHTLS galaxies. The ordinal classification algorithm treats distinct redshift bins as ordered values, which improves the quality of photometric redshift PDFs, compared with non-ordinal classification architectures. We also propose a new single value point estimate of the galaxy redshift,whichcan beusedtoestimatethefullredshiftPDFofagalaxy sample.Thismethod is competitive in terms of accuracy with contemporary algorithms, which stack the full redshift PDFs of all galaxies in the sample, but requires orders of magnitude less storage space. The methods described in this paper greatly improve the log-likelihood of individual object redshift PDFs, when compared with a popular neural network code (ANNZ). In our use case, this improvement reaches 50percent for high-redshift objects (z ≥ 0.75). We show that using these more accurate photometric redshift PDFs will lead to a reduction in the systematic biases by up to a factor of 4, when compared with less accurate PDFs obtained from commonly used

[1]  Robert P. W. Duin,et al.  On the Choice of Smoothing Parameters for Parzen Estimators of Probability Density Functions , 1976, IEEE Transactions on Computers.

[2]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .

[3]  Nick Kaiser,et al.  Weak gravitational lensing of distant galaxies , 1992 .

[4]  G. Celeux,et al.  An entropy criterion for assessing the number of clusters in a mixture model , 1996 .

[5]  N. Benı́tez Bayesian Photometric Redshift Estimation , 1998, astro-ph/9811189.

[6]  A. Pickles A Stellar Spectral Flux Library: 1150–25000 Å , 1998 .

[7]  Gérard Govaert,et al.  An improvement of the NEC criterion for assessing the number of clusters in a mixture model , 1999, Pattern Recognit. Lett..

[8]  A. J. Connolly,et al.  Reconstructing Galaxy Spectral Energy Distributions from Broadband Photometry , 1999, astro-ph/9910389.

[9]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[10]  S.Cole,et al.  The 2dF Galaxy Redshift Survey: spectra and redshifts , 2001, astro-ph/0106498.

[11]  R. Bender,et al.  The FORS Deep Field: Photometric Data and Photometric Redshifts , 2001 .

[12]  M. Bartelmann,et al.  Weak gravitational lensing , 2016, Scholarpedia.

[13]  Luc De Raedt,et al.  Machine Learning: ECML 2001 , 2001, Lecture Notes in Computer Science.

[14]  Princeton University,et al.  LSST: a complementary probe of dark energy , 2002 .

[15]  Peter Stone,et al.  Modeling Auction Price Uncertainty Using Boosting-based Conditional Density Estimation , 2002, ICML.

[16]  Michigan.,et al.  Estimating photometric redshifts with artificial neural networks , 2002, astro-ph/0203250.

[17]  J. Peacock,et al.  Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.

[18]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[19]  Y. Mellier,et al.  The VIRMOS deep imaging survey - I. Overview, survey strategy, and CFH12K observations , 2004 .

[20]  Ofer Lahav,et al.  ANNz: Estimating Photometric Redshifts Using Artificial Neural Networks , 2004 .

[21]  THE DEEP GROTH STRIP GALAXY REDSHIFT SURVEY. III. REDSHIFT CATALOG AND PROPERTIES OF GALAXIES , 2004, astro-ph/0411128.

[22]  Garth D. Illingworth,et al.  The DEEP Groth Strip Survey. I. The Sample , 2005, astro-ph/0503376.

[23]  B. Flaugher The Dark Energy Survey , 2005 .

[24]  John Ellis,et al.  Int. J. Mod. Phys. , 2005 .

[25]  B. Garilli,et al.  Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey , 2006, astro-ph/0603217.

[26]  Gérard Govaert,et al.  Model-based cluster and discriminant analysis with the MIXMOD software , 2006, Comput. Stat. Data Anal..

[27]  Nicolai Meinshausen,et al.  Quantile Regression Forests , 2006, J. Mach. Learn. Res..

[28]  G. Zamorani,et al.  The Zurich Extragalactic Bayesian Redshift Analyzer and its first application: COSMOS , 2006 .

[29]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[30]  I. Smail,et al.  The All-Wavelength Extended Groth Strip International Survey (AEGIS) Data Sets , 2006, astro-ph/0607355.

[31]  Bin Wang,et al.  Bandwidth Selection for Weighted Kernel Density Estimation , 2007, 0709.1616.

[32]  A. Mazure,et al.  The Vimos VLT deep survey Global properties of 20 000 galaxies in the IAB < 22.5 WIDE survey , 2008, 0804.4568.

[33]  Huan Lin,et al.  Estimating the redshift distribution of photometric galaxy samples , 2008 .

[34]  S. J. Lilly,et al.  Precision photometric redshift calibration for galaxy–galaxy weak lensing , 2007, 0709.1692.

[35]  R. Bender,et al.  Photometric redshifts for the CFHTLS-Wide , 2008, 0811.3211.

[36]  Karl Glazebrook,et al.  The WiggleZ Dark Energy Survey: survey design and first data release , 2009, 0911.4246.

[37]  J. Leeuw,et al.  Isotone Optimization in R: Pool-Adjacent-Violators Algorithm (PAVA) and Active Set Methods , 2009 .

[38]  Takafumi Kanamori,et al.  Nonparametric Conditional Density Estimation Using Piecewise-Linear Solution Path of Kernel Quantile Regression , 2009, Neural Computation.

[39]  Huan Lin,et al.  Estimating the redshift distribution of photometric galaxy samples – II. Applications and tests of a new method , 2008, 0801.3822.

[40]  J. Frieman,et al.  CROSS-CORRELATION WEAK LENSING OF SDSS GALAXY CLUSTERS. I. MEASUREMENTS , 2007, 0709.1153.

[41]  Eibe Frank,et al.  Conditional Density Estimation with Class Probability Estimators , 2009, ACML.

[42]  P. A. R. Ade,et al.  GALAXY CLUSTERS DISCOVERED WITH A SUNYAEV–ZEL'DOVICH EFFECT SURVEY , 2008, 0810.1578.

[43]  Maya R. Gupta,et al.  EM Demystified: An Expectation-Maximization Tutorial , 2010 .

[44]  Takafumi Kanamori,et al.  Least-Squares Conditional Density Estimation , 2010, IEICE Trans. Inf. Syst..

[45]  D. Gerdes,et al.  PHAT: PHoto-z Accuracy Testing , 2010, 1008.0658.

[46]  J. Lesgourgues,et al.  The Cosmic Linear Anisotropy Solving System (CLASS). Part II: Approximation schemes , 2011, 1104.2933.

[47]  August E. Evrard,et al.  Cosmological Parameters from Observations of Galaxy Clusters , 2011, 1103.4829.

[48]  R. Nichol,et al.  Euclid Definition Study Report , 2011, 1110.3193.

[49]  P. A. R. Ade,et al.  A SUNYAEV–ZEL'DOVICH-SELECTED SAMPLE OF THE MOST MASSIVE GALAXY CLUSTERS IN THE 2500 deg2 SOUTH POLE TELESCOPE SURVEY , 2011, 1101.1290.

[50]  D. Wittman,et al.  DISCOVERY OF A DISSOCIATIVE GALAXY CLUSTER MERGER WITH LARGE PHYSICAL SEPARATION , 2011, 1110.4391.

[51]  S. Maddox,et al.  Herschel-ATLAS : Multi-wavelength SEDs and physical properties of 250 μm selected galaxies at z <0.5 , 2012, 1208.3079.

[52]  R. J. Wainscoat,et al.  THE Pan-STARRS1 PHOTOMETRIC SYSTEM , 2012, 1203.0297.

[53]  R. Bender,et al.  PHOTOMETRIC REDSHIFTS AND SYSTEMATIC VARIATIONS IN THE SPECTRAL ENERGY DISTRIBUTIONS OF LUMINOUS RED GALAXIES FROM SDSS DR7 , 2013, 1303.3005.

[54]  G. Zamorani,et al.  The VIMOS Public Extragalactic Survey (VIPERS) - First Data Release of 57 204 spectroscopic measurements , 2013, 1310.1008.

[55]  R. J. Brunner,et al.  TPZ: photometric redshift PDFs and ancillary information by using prediction trees and random forests , 2013, 1303.7269.

[56]  A. Fontana,et al.  A Critical Assessment of Photometric Redshift Methods: A CANDELS Investigation , 2013, 1308.5353.

[57]  S. Seitz,et al.  Weak lensing analysis of RXC J2248.7−4431 , 2013, 1304.0764.

[58]  Yannick Mellier,et al.  CFHTLenS: combined probe cosmological model comparison using 2D weak gravitational lensing , 2012, 1212.3338.

[59]  R. Nichol,et al.  The VIMOS Public Extragalactic Redshift Survey (VIPERS) - an unprecedented view of galaxies and large-scale structure at 0.5 < z < 1.2 , 2013, 1303.2623.

[60]  L. Costa,et al.  Large-scale analysis of the SDSS-III DR8 photometric luminous galaxies angular correlation function , 2013, 1308.0630.

[61]  R. Bender,et al.  Dark matter halo properties from galaxy-galaxy lensing , 2013, 1303.6287.

[62]  Yannick Mellier,et al.  CFHTLenS tomographic weak lensing: quantifying accurate redshift distributions , 2012, 1212.3327.

[63]  D. Burke,et al.  Weighing the Giants – III. Methods and measurements of accurate galaxy cluster weak-lensing masses , 2012, 1208.0605.

[64]  J. Koppenhoefer,et al.  Weak lensing analysis of SZ-selected clusters of galaxies from the SPT and Planck surveys , 2013, 1310.6744.

[65]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[66]  R. Nichol,et al.  Photometric redshift analysis in the Dark Energy Survey Science Verification data , 2014, 1406.4407.

[67]  R. J. Brunner,et al.  Sparse representation of photometric redshift probability density functions: preparing for petascale astronomy , 2014, 1404.6442.

[68]  J. Weller,et al.  Data augmentation for machine learning redshifts applied to Sloan Digital Sky Survey galaxies , 2015, 1501.06759.

[69]  C. Bonnett Using neural networks to estimate redshift distributions. An application to CFHTLenS , 2013, 1312.1287.

[70]  Roman Zitlau,et al.  Feature importance for machine learning redshifts applied to SDSS galaxies , 2014, 1410.4696.