Mechanisms of permeation and selectivity in calcium channels.

The mechanisms underlying ion transport and selectivity in calcium channels are examined using electrostatic calculations and Brownian dynamics simulations. We model the channel as a rigid structure with fixed charges in the walls, representing glutamate residues thought to be responsible for ion selectivity. Potential energy profiles obtained from multi-ion electrostatic calculations provide insights into ion permeation and many other observed features of L-type calcium channels. These qualitative explanations are confirmed by the results of Brownian dynamics simulations, which closely reproduce several experimental observations. These include the current-voltage curves, current-concentration relationship, block of monovalent currents by divalent ions, the anomalous mole fraction effect between sodium and calcium ions, attenuation of calcium current by external sodium ions, and the effects of mutating glutamate residues in the amino acid sequence.

[1]  R. Tsien,et al.  Molecular determinants of Ca2+ selectivity and ion permeation in L-type Ca2+ channels , 1993, Nature.

[2]  R. MacKinnon,et al.  Two identical noninteracting sites in an ion channel revealed by proton transfer. , 1994, Science.

[3]  H. Guy,et al.  Structural models of Na+, Ca2+, and K+ channels. , 1995, Society of General Physiologists series.

[4]  B. Chait,et al.  The structure of the potassium channel: molecular basis of K+ conduction and selectivity. , 1998, Science.

[5]  P. Wolynes,et al.  The theory of ion transport through membrane channels. , 1985, Progress in biophysics and molecular biology.

[6]  W. Almers,et al.  The Ca channel in skeletal muscle is a large pore. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[7]  D. Levitt,et al.  Electrostatic calculations for an ion channel. I. Energy and potential profiles and interactions between ions. , 1978, Biophysical journal.

[8]  R. Tsien,et al.  Calcium channels: mechanisms of selectivity, permeation, and block. , 1987, Annual review of biophysics and biophysical chemistry.

[9]  S. Chung,et al.  Molecular dynamics study of the KcsA potassium channel. , 1999, Biophysical journal.

[10]  E. Guàrdia,et al.  Mean force potential for the calcium–chloride ion pair in water , 1993 .

[11]  L. Polo-Parada,et al.  Block of N-type Calcium Channels in Chick Sensory Neurons by External Sodium , 1997, The Journal of general physiology.

[12]  E. Mccleskey,et al.  Ion Channel Selectivity through Stepwise Changes in Binding Affinity , 1998, The Journal of general physiology.

[13]  F. Blaney,et al.  A molecular mechanism for toxin block in N-type calcium channels. , 1998, Protein engineering.

[14]  E. Jakobsson,et al.  Brownian dynamics study of a multiply-occupied cation channel: application to understanding permeation in potassium channels. , 1994, Biophysical journal.

[15]  R. MacKinnon,et al.  Isolation of a Single Carboxyl-Carboxylate Proton Binding Site in the Pore of a Cyclic Nucleotide–Gated Channel , 1999, The Journal of general physiology.

[16]  W. Almers,et al.  Non‐selective conductance in calcium channels of frog muscle: calcium selectivity in a single‐file pore. , 1984, The Journal of physiology.

[17]  C. Armstrong,et al.  Ion permeation through calcium channels. A one-site model. , 1991, Annals of the New York Academy of Sciences.

[18]  S H Chung,et al.  Test of Poisson-Nernst-Planck Theory in Ion Channels , 1999, The Journal of general physiology.

[19]  G. R. Smith,et al.  Dynamic properties of Na+ ions in models of ion channels: a molecular dynamics study. , 1998, Biophysical journal.

[20]  Benoît Roux,et al.  Ion transport in a gramicidin-like channel: dynamics and mobility , 1991 .

[21]  S. Lowen The Biophysical Journal , 1960, Nature.

[22]  H. Lux,et al.  Na+ currents through low‐voltage‐activated Ca2+ channels of chick sensory neurones: block by external Ca2+ and Mg2+. , 1990, The Journal of physiology.

[23]  Alistair P. Rendell,et al.  The potassium channel: Structure, selectivity and diffusion , 2000 .

[24]  S. Narumiya,et al.  Primary structure and functional expression of the cardiac dihydropyridine-sensitive calcium channel , 1989, Nature.

[25]  R. Tsien,et al.  Aspartate Substitutions Establish the Concerted Action of P-region Glutamates in Repeats I and III in Forming the Protonation Site of L-type Ca2+ Channels* , 1997, The Journal of Biological Chemistry.

[26]  S. Chung,et al.  Tests of continuum theories as models of ion channels. I. Poisson-Boltzmann theory versus Brownian dynamics. , 2000, Biophysical journal.

[27]  W. Almers,et al.  A non‐selective cation conductance in frog muscle membrane blocked by micromolar external calcium ions. , 1984, The Journal of physiology.

[28]  F. Bezanilla,et al.  Negative Conductance Caused by Entry of Sodium and Cesium Ions into the Potassium Channels of Squid Axons , 1972, The Journal of general physiology.

[29]  C. Kuo,et al.  A functional view of the entrances of L-type Ca2+ channels: estimates of the size and surface potential at the pore mouths , 1992, Neuron.

[30]  Shin-Ho Chung,et al.  Solutions of Poisson's equation in channel-like geometries , 1998 .

[31]  R. Tsien,et al.  A novel type of cardiac calcium channel in ventricular cells , 1985, Nature.

[32]  R. Rosenberg,et al.  Characterization and localization of two ion-binding sites within the pore of cardiac L-type calcium channels , 1991, The Journal of general physiology.

[33]  B. Eisenberg,et al.  Ion permeation and glutamate residues linked by Poisson-Nernst-Planck theory in L-type calcium channels. , 1998, Biophysical journal.

[34]  S. Chung,et al.  Energy barrier presented to ions by the vestibule of the biological membrane channel. , 1996, Biophysical journal.

[35]  D. Levitt Electrostatic calculations for an ion channel. II. Kinetic behavior of the gramicidin A channel. , 1978, Biophysical journal.

[36]  A. Lyubartsev,et al.  Calculation of effective interaction potentials from radial distribution functions: A reverse Monte Carlo approach. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[37]  P. Hess,et al.  Characterization of the high‐affinity Ca2+ binding sites in the L‐type Ca2+ channel pore in rat phaeochromocytoma cells. , 1993, The Journal of physiology.

[38]  F. Stillinger,et al.  Improved simulation of liquid water by molecular dynamics , 1974 .

[39]  M. Williams,et al.  Structure and functional expression of an omega-conotoxin-sensitive human N-type calcium channel. , 1992, Science.

[40]  E. Mccleskey Calcium Channel Permeation: A Field in Flux , 1999, The Journal of general physiology.

[41]  M. Gopalakrishnan,et al.  Glutamate substitution in repeat IV alters divalent and monovalent cation permeation in the heart Ca2+ channel. , 1995, Biophysical journal.

[42]  C. Armstrong,et al.  Ion Permeation through Calcium Channels , 1991 .

[43]  S. Hagiwara,et al.  Currents carried by monovalent cations through calcium channels in mouse neoplastic B lymphocytes. , 1985, The Journal of physiology.

[44]  V. Flockerzi,et al.  Primary structure of the receptor for calcium channel blockers from skeletal muscle , 1987, Nature.

[45]  G. R. Smith,et al.  Effective diffusion coefficients of K+ and Cl- ions in ion channel models. , 1999, Biophysical chemistry.

[46]  R. MacKinnon,et al.  The cavity and pore helices in the KcsA K+ channel: electrostatic stabilization of monovalent cations. , 1999, Science.

[47]  J. Rasaiah,et al.  MOBILITY AND SOLVATION OF IONS IN CHANNELS , 1996 .

[48]  G. R. Smith,et al.  The dielectric properties of water within model transbilayer pores. , 1997, Biophysical journal.

[49]  P. Hess,et al.  Ion permeation through the L‐type Ca2+ channel in rat phaeochromocytoma cells: two sets of ion binding sites in the pore. , 1993, The Journal of physiology.

[50]  R. Tsien,et al.  Blockade of current through single calcium channels by Cd2+, Mg2+, and Ca2+. Voltage and concentration dependence of calcium entry into the pore , 1986, The Journal of general physiology.

[51]  R. Tsien,et al.  Calcium channel selectivity for divalent and monovalent cations. Voltage and concentration dependence of single channel current in ventricular heart cells , 1986, The Journal of general physiology.

[52]  Elvira Guàrdia,et al.  Na+–Na+ and Cl−–Cl− ion pairs in water: Mean force potentials by constrained molecular dynamics , 1991 .

[53]  Elvira Guàrdia,et al.  Potential of mean force by constrained molecular dynamics: A sodium chloride ion-pair in water , 1991 .

[54]  Shin-Ho Chung,et al.  Permeation of ions across the potassium channel: Brownian dynamics studies. , 1999, Biophysical journal.

[55]  R. Tsien,et al.  Calcium channels in planar lipid bilayers: insights into mechanisms of ion permeation and gating. , 1986, Science.

[56]  W. Im,et al.  A Grand Canonical Monte Carlo-Brownian dynamics algorithm for simulating ion channels. , 2000, Biophysical journal.

[57]  Y. Mori,et al.  Structural determinants of ion selectivity in brain calcium channel , 1993, FEBS letters.

[58]  D. M. Kroll,et al.  Molecular Dynamics Simulations of Water in a Spherical Cavity , 1995 .

[59]  S. Chung,et al.  Brownian dynamics study of ion transport in the vestibule of membrane channels. , 1998, Biophysical journal.

[60]  P. Hess Elementary properties of cardiac calcium channels: a brief review. , 1988, Canadian journal of physiology and pharmacology.

[61]  G. Ciccotti,et al.  Algorithms for Brownian dynamics , 2003 .

[62]  J. Schetz,et al.  A Reevaluation of the Structure in the Pore Region of Voltage-Activated Cation Channels. , 1993, The Biological bulletin.

[63]  Serdar Kuyucak,et al.  Invalidity of continuum theories of electrolytes in nanopores , 2000 .

[64]  E. Guàrdia,et al.  On the influence of the ionic charge on the mean force potential of ion‐pairs in water , 1996 .

[65]  R. Tsien,et al.  Molecular basis of proton block of L-type Ca2+ channels , 1996, The Journal of general physiology.

[66]  G. Isenberg,et al.  Contribution of two types of calcium channels to membrane conductance of single myocytes from guinea‐pig coronary artery. , 1990, The Journal of physiology.

[67]  S. Chung,et al.  Molecular dynamics estimates of ion diffusion in model hydrophobic and KcsA potassium channels. , 2000, Biophysical chemistry.

[68]  Herman J. C. Berendsen,et al.  ALGORITHMS FOR BROWNIAN DYNAMICS , 1982 .

[69]  Models of ion pores in N-type voltage-gated calcium channels. , 1995, Journal of molecular graphics.

[70]  Shin-Ho Chung,et al.  The effect of hydrophobic and hydrophilic channel walls on the structure and diffusion of water and ions , 1999 .

[71]  Shin-Ho Chung,et al.  COMPUTER SIMULATION OF ION CONDUCTANCE IN MEMBRANE CHANNELS , 1998 .

[72]  Shin-Ho Chung,et al.  Study of ionic currents across a model membrane channel using Brownian dynamics. , 1998, Biophysical journal.

[73]  Shin-Ho Chung,et al.  Tests of continuum theories as models of ion channels. II. Poisson-Nernst-Planck theory versus brownian dynamics. , 2000, Biophysical journal.

[74]  R. Tsien,et al.  Ca2+ channel selectivity at a single locus for high-affinity Ca2+ interactions , 1995, Neuron.

[75]  R. Tsien,et al.  Mechanism of ion permeation through calcium channels , 1984, Nature.

[76]  Christopher Miller Ionic Hopping Defended , 1999, The Journal of general physiology.