Microbial Genomics and the Periodic Table

Extensive knowledge of microbial metabolism has been earned through more than a century of reductionist study. There is now basic understanding of how cultivated bacteria transduce the chemical energy of a growth substrate into the work and biosynthetic processes that underlie both survival and

[1]  P. Albersheim,et al.  Requirement of Borate Cross-Linking of Cell Wall Rhamnogalacturonan II for Arabidopsis Growth , 2001, Science.

[2]  S. Silver,et al.  Gene regulation of plasmid- and chromosome-determined inorganic ion transport in bacteria. , 1992, Microbiological reviews.

[3]  T. Tsuchiya,et al.  Role of Na+ and Li+ in thiomethylgalactoside transport by the melibiose transport system of Escherichia coli , 1978, Journal of bacteriology.

[4]  J. Posey,et al.  Lack of a role for iron in the Lyme disease pathogen. , 2000, Science.

[5]  C. Anthony,et al.  Reconstitution of the quinoprotein methanol dehydrogenase from inactive Ca(2+)-free enzyme with Ca2+, Sr2+ or Ba2+. , 1996, The Biochemical journal.

[6]  J. Meyer,et al.  Classification and phylogeny of hydrogenases. , 2001, FEMS microbiology reviews.

[7]  Philip Ball,et al.  The Ingredients: A Guided Tour of the Elements , 2003 .

[8]  Kenneth H. Nealson,et al.  Breathing metals as a way of life: geobiology in action , 2002, Antonie van Leeuwenhoek.

[9]  A. Stams,et al.  Purification and Characterization of (Per)Chlorate Reductase from the Chlorate-Respiring Strain GR-1 , 1999, Journal of bacteriology.

[10]  Bernadette Bensaude-Vincent,et al.  Graphic Representations of the Periodic System of Chemical Elements , 2001 .

[11]  Susumu Goto,et al.  LIGAND: database of chemical compounds and reactions in biological pathways , 2002, Nucleic Acids Res..

[12]  R. Macleod,et al.  The effect of related ions on the potassium requirement of lactic acid bacteria. , 1948, The Journal of biological chemistry.

[13]  E. Balish,et al.  Methionine biosynthesis in Escherichia coli: induction and repression of methylmethionine(or adenosylmethionine):homocysteine methyltransferase. , 1967, Archives of biochemistry and biophysics.

[14]  G. Brown,et al.  Potassium uptake and retention by Oceanomonas baumannii at low water activity in the presence of phenol. , 2001, FEMS Microbiology Letters.

[15]  M. Doudoroff,et al.  The aerobic pseudomonads: a taxonomic study. , 1966, Journal of general microbiology.

[16]  S. Silver,et al.  Regulation of the cadA cadmium resistance determinant of Staphylococcus aureus plasmid pI258 , 1991, Journal of bacteriology.

[17]  D. B. Harper Biogenesis and metabolic role of halomethanes in fungi and plants , 1993 .

[18]  M. Stoltenberg,et al.  Histochemical tracing of bismuth in Helicobacter pylori after in vitro exposure to bismuth citrate. , 2001, Scandinavian journal of gastroenterology.

[19]  M. Rouf SPECTROCHEMICAL ANALYSIS OF INORGANIC ELEMENTS IN BACTERIA , 1964, Journal of bacteriology.

[20]  M. Harada,et al.  Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. , 1995, Critical reviews in toxicology.

[21]  K. Pée Microbial biosynthesis of halometabolites , 2001, Archives of Microbiology.

[22]  P. C. Wensink,et al.  One Protein, Two Enzymes* , 1999, The Journal of Biological Chemistry.

[23]  J. Ebert,et al.  DNA synthesis by an insoluble chromatin fraction associated with the nuclear membrane of animal cells. , 1971, Biochemical and biophysical research communications.

[24]  S. Roseman,et al.  A sodium-dependent sugar co-transport system in bacteria. , 1971, Biochemical and biophysical research communications.

[25]  T. Kawasaki,et al.  Cotransport of proline and Li+ in Escherichia coli , 1984, FEBS letters.

[26]  H. Uchiyama,et al.  Isolation and characterization of cesium-accumulating bacteria , 1992, Applied and environmental microbiology.

[27]  J. Downard,et al.  Regulated Exopolysaccharide Production inMyxococcus xanthus , 1999, Journal of bacteriology.

[28]  D. Giedroc,et al.  Characterization of a metalloregulatory bismuth(III) site in Staphylococcusaureus pI258 CadC repressor , 2002, JBIC Journal of Biological Inorganic Chemistry.

[29]  D. Bossemeyer,et al.  Specific cesium transport via the Escherichia coli Kup (TrkD) K+ uptake system , 1989, Journal of bacteriology.

[30]  Y. Maeda,et al.  Formation and emission of volatile polonium compound by microbial activity and polonium methylation with methylcobalamin. , 2001, Environmental science & technology.

[31]  A. Hirner,et al.  Production of Volatile Derivatives of Metal(loid)s by Microflora Involved in Anaerobic Digestion of Sewage Sludge , 2000, Applied and Environmental Microbiology.

[32]  J. Wu,et al.  Metalloregulated expression of the ars operon. , 1993, The Journal of biological chemistry.

[33]  B. Jaun Methane formation by methanogenic bacteria: redox chemistry of coenzyme F430 , 1993 .

[34]  P. Jasper,et al.  Potassium transport system of Rhodopseudomonas capsulata , 1978, Journal of bacteriology.

[35]  B. Bassler,et al.  Structural identification of a bacterial quorum-sensing signal containing boron , 2002, Nature.

[36]  H. Reichenbach,et al.  The tartrolons, new boron-containing antibiotics from a myxobacterium, Sorangium cellulosum. , 1995, The Journal of antibiotics.

[37]  A. Barabasi,et al.  Hierarchical Organization of Modularity in Metabolic Networks , 2002, Science.

[38]  S. Silver,et al.  Microbial arsenic: from geocycles to genes and enzymes. , 2002, FEMS microbiology reviews.

[39]  J. Foster,et al.  Endotrophic Calcium, Strontium, and Barium Spores of Bacillus megaterium and Bacillus cereus , 1966, Journal of bacteriology.

[40]  S. Silver,et al.  Energy-dependent arsenate efflux: the mechanism of plasmid-mediated resistance. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[41]  S. Fetzner Enzymes Involved in the Aerobic Bacterial Degradation of N-Heteroaromatic Compounds: Molybdenum Hydroxylases and Ring-Opening 2,4-Dioxygenases , 2000, Naturwissenschaften.

[42]  J. Joshi,et al.  Ferritin: protection of enzymatic activity against the inhibition by divalent metal ions in vitro. , 1984, Toxicology.

[43]  J. Feldmann,et al.  Occurrence of Volatile Metal and Metalloid Species in Landfill and Sewage Gases , 1995 .

[44]  J. Dunitz,et al.  Structure of boromycin. , 1971, Helvetica chimica acta.

[45]  N. Burford,et al.  Bismuth compounds and preparations with biological or medicinal relevance. , 1999, Chemical reviews.

[46]  L. Hager Mother Nature likes some halogenated compounds. , 1982, Basic life sciences.

[47]  I. Booth Bacterial ion channels. , 2003, Genetic engineering.

[48]  H. Seto 1.30 – Biosynthesis of the Natural C—P Compounds, Bialaphos and Fosfomycin , 1999 .

[49]  H. Whiteley,et al.  REDUCTION OF INORGANIC COMPOUNDS WITH MOLECULAR HYDROGEN BY MICROCOCCUS LACTILYTICUS I , 1962, Journal of bacteriology.

[50]  O. Tuovinen,et al.  Role of divalent cations in the subunit associations of complex flagella from Rhizobium meliloti , 1992, Journal of bacteriology.

[51]  K. Kirk Biochemistry of the Elemental Halogens and Inorganic Halides , 1991, Biochemistry of the Elements.

[52]  M. García-González,et al.  Boron requirement in cyanobacteria : its possible role in the early evolution of photosynthetic organisms. , 1990, Plant physiology.

[53]  D. Bruce,et al.  Requirement of potassium or rubidium for biosynthesis of pigment by Serratia marcescens , 1968, Journal of bacteriology.

[54]  D. Lovley Environmental Microbe-Metal Interactions , 2000 .

[55]  M. Adams,et al.  Tungsten in biological systems. , 1996, FEMS microbiology reviews.

[56]  J. Michiels,et al.  The functions of Ca(2+) in bacteria: a role for EF-hand proteins? , 2002, Trends in microbiology.

[57]  Robert J.P. Williams,et al.  The Biological Chemistry of the Elements: The Inorganic Chemistry of Life , 2001 .

[58]  M. Kertesz Riding the sulfur cycle--metabolism of sulfonates and sulfate esters in gram-negative bacteria. , 2000, FEMS microbiology reviews.

[59]  M. Scarratt,et al.  Production of methyl bromide and methyl chloride in laboratory cultures of marine phytoplankton II , 1998 .

[60]  Klaus G. Heumann,et al.  Production of methylated mercury, lead, and cadmium by marine bacteria as a significant natural source for atmospheric heavy metals in polar regions , 1999 .

[61]  T. Tsuchiya,et al.  Lithium ion-sugar cotransport via the melibiose transport system in Escherichia coli. Measurement of Li+ transport and specificity. , 1983, The Journal of biological chemistry.

[62]  S. Avery Caesium accumulation by microorganisms: uptake mechanisms, cation competition, compartmentalization and toxicity , 1995, Journal of Industrial Microbiology.

[63]  K. Kamimura,et al.  Mechanism of Growth Inhibition by Tungsten in Acidithiobacillus ferrooxidans , 2001, Bioscience, biotechnology, and biochemistry.

[64]  B. Marshall,et al.  Antibacterial action of bismuth in relation to Campylobacter pyloridis colonization and gastritis. , 1987, Digestion.

[65]  L. J. Cox,et al.  Lithium chloride-sodium propionate agar for the enumeration of bifidobacteria in fermented dairy products. , 1992, Journal of dairy science.

[66]  T. Scholz,et al.  Selenophosphate synthetase. Enzyme properties and catalytic reaction. , 1994, The Journal of biological chemistry.

[67]  R. Bartha,et al.  Cobalamin-mediated mercury methylation by Desulfovibrio desulfuricans LS , 1993, Applied and Environmental Microbiology.

[68]  V. Müller,et al.  Chloride, a New Environmental Signal Molecule Involved in Gene Regulation in a Moderately Halophilic Bacterium, Halobacillus halophilus , 2002, Journal of bacteriology.

[69]  G. Gadd,et al.  The influence of pH and external H+ concentration on caesium toxicity and accumulation inEscherichia coli andBacillus subtilis , 1995, Journal of Industrial Microbiology.

[70]  E. Groisman,et al.  Mg2+ homeostasis and avoidance of metal toxicity , 2002, Molecular microbiology.

[71]  J. Feldmann,et al.  Methylated bismuth in the environment , 1999 .

[72]  M. Carlier,et al.  RecA protein-promoted cleavage of LexA repressor in the presence of ADP and structural analogues of inorganic phosphate, the fluoride complexes of aluminum and beryllium. , 1989, The Journal of biological chemistry.

[73]  A. Summers Biotransformations of mercury compounds. , 1988, Basic life sciences.

[74]  F. Young Biochemistry , 1955, The Indian Medical Gazette.

[75]  C. Prigent-Combaret,et al.  Methylation of Inorganic and Organic Selenium by the Bacterial Thiopurine Methyltransferase , 2002, Journal of bacteriology.

[76]  T. Tsuchiya,et al.  Na+ (Li+)-proline cotransport inEscherichia coli , 2005, The Journal of Membrane Biology.

[77]  J. Bellama,et al.  Organometals and Organometalloids: Occurrence and Fate in the Environment , 1979 .

[78]  J. Joshi,et al.  Purification and properties of phosphoglucomutase from Fleischmann's yeast. , 1975, European journal of biochemistry.

[79]  Jörg Meyer,et al.  Biomethylation of bismuth by the methanogen Methanobacterium formicicum. , 2002 .

[80]  R. Novick,et al.  Plasmid-linked Resistance to Inorganic Salts in Staphylococcus aureus , 1968, Journal of bacteriology.

[81]  R. W. Thatcher A PROPOSED CLASSIFICATION OF THE CHEMICAL ELEMENTS WITH RESPECT TO THEIR FUNCTIONS IN PLANT NUTRITION. , 1934, Science.

[82]  J. M. Pratt Making and breaking the Co-alkyl bond in B12 derivatives , 1993 .

[83]  J. S. Thayer,et al.  Review: Biological methylation of less-studied elements , 2002 .

[84]  J. Coates,et al.  Ubiquity and Diversity of Dissimilatory (Per)chlorate-Reducing Bacteria , 1999, Applied and Environmental Microbiology.

[85]  Wesley E. Martin,et al.  Pseudomonas aeruginosa Synthesizes Phosphatidylcholine by Use of the Phosphatidylcholine Synthase Pathway , 2002, Journal of bacteriology.

[86]  S. Black Yeast aldehyde dehydrogenase. , 1951, Archives of biochemistry and biophysics.

[87]  F. Challenger Biosynthesis of Organometallic and Organometalloidal Compounds , 1979 .

[88]  J. Rosazza,et al.  Purification and Characterization ofStreptomyces griseus CatecholO-Methyltransferase , 2000, Applied and Environmental Microbiology.

[89]  G. Hendricks,et al.  Deposition of bismuth by Yersinia enterocolitica , 2004, Medical Microbiology and Immunology.

[90]  B. Chait,et al.  The structure of the potassium channel: molecular basis of K+ conduction and selectivity. , 1998, Science.

[91]  B. Elsenhans,et al.  Methylrhodibalamin and 5'-deoxyadenosylrhodibalamin, the rhodium analogues of methylcobalamin and cobalamin coenzyme. , 1974, The Journal of biological chemistry.

[92]  S. Lippard,et al.  Xenon and halogenated alkanes track putative substrate binding cavities in the soluble methane monooxygenase hydroxylase. , 2001, Biochemistry.

[93]  D G Kehres,et al.  The CorA magnesium transporter gene family. , 1998, Microbial & comparative genomics.

[94]  J. Hamilton,et al.  Biochemistry: Biosynthesis of an organofluorine molecule , 2002, Nature.

[95]  D. Graham,et al.  Double-blind comparison of bismuth subsalicylate and placebo in the prevention and treatment of enterotoxigenic Escherichia coli-induced diarrhea in volunteers. , 1983, Gastroenterology.

[96]  P. Wong,et al.  Methylation of lead in the environment , 1975, Nature.

[97]  L. Chen,et al.  Induction of a Futile Embden-Meyerhof-Parnas Pathway in Deinococcus radiodurans by Mn: Possible Role of the Pentose Phosphate Pathway in Cell Survival , 2000, Applied and Environmental Microbiology.

[98]  W. Goessler,et al.  Biomethylation of Inorganic Antimony Compounds by an Aerobic Fungus: Scopulariopsis brevicaulis , 1998 .

[99]  T. Hollocher,et al.  Beryllium-induced misincorporation by a DNA polymerase: a possible factor in beryllium toxicity. , 1975, Biochemical and biophysical research communications.

[100]  P. Fortnagel,et al.  Molecular cloning and nucleotide sequence of the gene encoding a calcium-dependent exoproteinase from Bacillus megaterium ATCC 14581. , 1993, Journal of general microbiology.

[101]  K. Altendorf,et al.  Cs+ Induces the kdpOperon of Escherichia coli by Lowering the Intracellular K+ Concentration , 2001, Journal of bacteriology.

[102]  P. Craig,et al.  Biomethylation of tin (II) complexes in the presence of pure strains of Saccharomyces cerevisiae , 1987 .

[103]  K. Heumann,et al.  Biomethylation of thallium by bacteria and first determination of biogenic dimethylthallium in the ocean , 2000 .

[104]  P. Pfundstein,et al.  X‐ray Microanalysis of the Mineral Contents of Some Protozoa , 1982 .

[105]  T. Beveridge,et al.  Metal Ions and Bacteria , 1989 .

[106]  P. Kolattukudy,et al.  Isolation and characterization of an acyl-coenzyme A carboxylase from an erythromycin-producing Streptomyces erythreus. , 1982, Archives of biochemistry and biophysics.

[107]  Y. T. Fanchiang,et al.  Methylation of platinum complexes by methylcobalamin , 1979 .

[108]  F. Morel,et al.  The Biogeochemical Cycles of Trace Metals in the Oceans , 2003, Science.

[109]  金久 実,et al.  Post-genome informatics , 2000 .

[110]  Y. Kamagata,et al.  Bacteria Mediate Methylation of Iodine in Marine and Terrestrial Environments , 2001, Applied and Environmental Microbiology.

[111]  J. Trevors,et al.  Metal-microbe interactions: contemporary approaches. , 1997, Advances in microbial physiology.

[112]  W. P. Ridley,et al.  Biomethylation of toxic elements in the environment. , 1977, Science.

[113]  S. Mowbray,et al.  Activation of ribokinase by monovalent cations. , 2002, Journal of molecular biology.

[114]  中西 香爾,et al.  Comprehensive natural products chemistry , 1999 .

[115]  Thomas G. Chasteen,et al.  Microbial Methylation of Metalloids: Arsenic, Antimony, and Bismuth , 2002, Microbiology and Molecular Biology Reviews.

[116]  J. Wootton Re-assessment of ammonium-ion affinities of NADP-specific glutamate dehydrogenases. Activation of the Neurospora crassa enzyme by ammonium and rubidium ions. , 1983, The Biochemical journal.

[117]  M. Tsuda,et al.  Lithium toxicity and Na+(Li+)/H+ antiporter in Escherichia coli. , 1994, Biological & pharmaceutical bulletin.

[118]  D. Nies,et al.  Microbial heavy-metal resistance , 1999, Applied Microbiology and Biotechnology.

[119]  D. Blevins,et al.  Proposed physiologic functions of boron in plants pertinent to animal and human metabolism. , 1994, Environmental health perspectives.

[120]  S. Negi,et al.  Common nitrogen control of caesium uptake, caesium toxicity and ammonium (methylammonium) uptake in the cyanobacterium Nostoc muscorum. , 1994, FEMS microbiology letters.

[121]  H. Kaback,et al.  Sodium-dependent methyl 1-thio-beta-D-galactopyranoside transport in membrane vesicles isolated from Salmonella typhimurium. , 1977, Biochemistry.

[122]  Edward J. Wood,et al.  Biochemistry (3rd ed.) , 2004 .

[123]  V. A. Solé,et al.  Direct and Fe(II)-Mediated Reduction of Technetium by Fe(III)-Reducing Bacteria , 2000, Applied and Environmental Microbiology.

[124]  W. F. Burke,et al.  Extracellular exonuclease as a stage 0 biochemical marker in Bacillus subtilis sporulation , 1982, Journal of bacteriology.

[125]  P. Domenico,et al.  Resistance to bismuth among gram-negative bacteria is dependent upon iron and its uptake. , 1996, The Journal of antimicrobial chemotherapy.

[126]  T. G. Chasteen,et al.  Production of dimethyl telluride and elemental tellurium by bacteria amended with tellurite or tellurate , 2001 .

[127]  F. Morel,et al.  A biological function for cadmium in marine diatoms. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[128]  E. Fernández-Valiente,et al.  Essentiality of Boron for Dinitrogen Fixation in Anabaena sp. PCC 7119. , 1986, Plant physiology.

[129]  S. Ragsdale,et al.  Controlled potential enzymology of methyl transfer reactions involved in acetyl-CoA synthesis by CO dehydrogenase and the corrinoid/iron-sulfur protein from Clostridium thermoaceticum. , 1990, The Journal of biological chemistry.

[130]  Youxing Jiang,et al.  Crystal structure and mechanism of a calcium-gated potassium channel , 2002, Nature.

[131]  Lei Xu,et al.  Tumour biology: Herceptin acts as an anti-angiogenic cocktail , 2002, Nature.

[132]  H. D. Sharma,et al.  Comparison of the post-Chernobyl 137Cs contamination of mushrooms from eastern Europe, Sweden, and North America , 1993, Applied and environmental microbiology.

[133]  S. Shima,et al.  Crystal structure of methyl-coenzyme M reductase: the key enzyme of biological methane formation. , 1997, Science.

[134]  J. Morrison,et al.  A kinetic method for determining dissociation constants for metal complexes of adenosine 5'-triphosphate and adenosine 5'-diphosphate. , 1980, Biochemistry.

[135]  T. Sox,et al.  Binding and killing of bacteria by bismuth subsalicylate , 1989, Antimicrobial Agents and Chemotherapy.

[136]  S. Khan,et al.  Ion selectivity of the Vibrio alginolyticus flagellar motor , 1990, Journal of bacteriology.

[137]  F. Novelli,et al.  Gold(I) complexes as antimicrobial agents. , 1999, Farmaco.

[138]  P. Sadler,et al.  Coordination chemistry of metals in medicine: target sites for bismuth , 1999 .

[139]  S. Silver Genes for all metals—a bacterial view of the Periodic Table , 1998, Journal of Industrial Microbiology & Biotechnology.

[140]  G. Gadd Microbial formation and transformation of organometallic and organometalloid compounds , 1993 .

[141]  G. Schmitt,et al.  Bariumanreicherung in den Müllerschen Körperchen der Loxodidae (Ciliata, Holotricha) / Accumulation of Barium in Müller's Bodies of the Loxodidae (Ciliata, Holotricha) , 1975 .

[142]  B. Álvarez,et al.  Purification and Characterization of a Psychrophilic, Calcium-Induced, Growth-Phase-Dependent Metalloprotease from the Fish Pathogen Flavobacterium psychrophilum , 2001, Applied and Environmental Microbiology.

[143]  M. T. Destro,et al.  Evaluation of motility enrichment on modified semi-solid Rappaport-Vassiladis medium (MSRV) for the detection of Salmonella in foods. , 2001, International journal of food microbiology.

[144]  Lynda B. M. Ellis,et al.  The University of Minnesota Biocatalysis/Biodegradation Database: post-genomic data mining , 2003, Nucleic Acids Res..