Stimulation of High Temperature Carbonate Reservoirs Using Seawater and GLDA Chelating Agents: Reaction Kinetics Comparative Study

[1]  O. Bautista,et al.  Field Treatment of an Injector Well in a Sandstone Formation Using a Low Corrosive Environmentally Friendly Fluid that Does Not Require Flow-Back , 2017 .

[2]  Edwin Rudolf Antony Bang,et al.  Corrosion Rates of Cr- and Ni-Based Alloys With Organic Acids and Chelating Agents Used in Stimulation of Deep Wells , 2017 .

[3]  H. Kwak,et al.  NMR as a Characterization Tool for Wormholes , 2016 .

[4]  S. Elkatatny,et al.  Stimulation of Seawater Injectors by GLDA (Glutamic-Di Acetic Acid) , 2016 .

[5]  K. Abdelgawad,et al.  Chelating-Agent Enhanced Oil Recovery for Sandstone and Carbonate Reservoirs , 2015 .

[6]  Mahmoud,et al.  Shifting to a New EOR Area for Sandstone Reservoirs With High Recovery, No Damage, and Low Cost , 2014 .

[7]  V. Balakotaiah,et al.  Comparison of Carbonate HCl Acidizing Experiments with 3D Simulations , 2013 .

[8]  N. R. Lummer,et al.  Field Treatment To Stimulate a Deep, Sour, Tight-Gas Well Using a New, Low Corrosion and Environmentally Friendly Fluid , 2013 .

[9]  H. Nasr-El-Din,et al.  Reaction of Emulsified Acids With Dolomite , 2013 .

[10]  Matthias G. Arend,et al.  A Review of Mass Transfer Controlling the Reaction Rate in Heterogeneous Catalytic Systems , 2011 .

[11]  H. Nasr-El-Din,et al.  Optimum Injection Rate of a New Chelate That Can Be Used To Stimulate Carbonate Reservoirs , 2011 .

[12]  H. Nasr-El-Din,et al.  Evaluation of a New Environmentally Friendly Chelating Agent for High-Temperature Applications , 2011 .

[13]  Chris E. Shuchart,et al.  Understanding Wormholes in Carbonates: Unprecedented Experimental Scale and 3D Visualization , 2010 .

[14]  G. Anderegg,et al.  CRITICAL EVALUATION OF STABILITY CONSTANTS OF METAL COMPLEXES OF COMPLEXONES FOR BIOMEDICAL AND ENVIRONMENTAL APPLICATIONS , 2005 .

[15]  H. Nasr-El-Din,et al.  Effect of Additives on the Acid Dissolution Rates of Calcium and Magnesium Carbonates , 2004 .

[16]  Michel Quintard,et al.  On the ability of a Darcy-scale model to capture wormhole formation during the dissolution of a porous medium , 2002, Journal of Fluid Mechanics.

[17]  M. Ziauddin,et al.  Chelating Agent-Based Fluids for Optimal Stimulation of High-Temperature Wells , 2002 .

[18]  M. Miller,et al.  Validation of Carbonate Matrix Stimulation Models , 2000 .

[19]  David Eslinger,et al.  Fighting Scale — Removal and Prevention , 2000 .

[20]  G. Penny,et al.  A Comparative Study of Straight/Gelled/Emulsified Hydrochloric Acid Diffusivity Coefficient Using Diaphragm Cell and Rotating Disk , 1999 .

[21]  B. Bazin From Matrix Acidizing to Acid Fracturing: A Laboratory Evaluation of Acid/Rock Interactions , 2001 .

[22]  H. Scott Fogler,et al.  Influence of Transport and Reaction on Wormhole Formation in Porous Media , 1998 .

[23]  H. S. Fogler,et al.  Chelating Agents as Effective Matrix Stimulation Fluids for Carbonate Formations , 1997 .

[24]  Alfred Daniel Hill,et al.  The Optimum Injection Rate for Matrix Acidizing of Carbonate Formations , 1993 .

[25]  S. Yen,et al.  Experimental Mass Transfer at a Forced‐Convective Rotating‐Disk Electrode , 1992 .

[26]  H. S. Fogler,et al.  Pore evolution and channel formation during flow and reaction in porous media , 1988 .

[27]  G. Daccord,et al.  Chemical dissolution of a porous medium by a reactive fluid. , 1987, Physical review letters.

[28]  H. S. Fogler,et al.  Acidization—I. The dissolution of dolomite in hydrochloric acid , 1973 .

[29]  B. B. Williams,et al.  Characteristics of Acid Reaction in Limestone Formations , 1971 .

[30]  I. Cornet,et al.  Mass Transfer to a Rotating Disk , 1971 .

[31]  J. Newman Schmidt Number Correction for the Rotating Disk , 1966 .

[32]  A. Martell Chelating Agents and Metal Chelates. , 1965 .