Global bifurcations in duopoly when the Cournot Point is Destabilized via a Subcritical Neimark bifurcation

An adaptive oligopoly model, where the demand function is isoelastic and the competitors operate under constant marginal costs, is considered. The Cournot equilibrium point then loses stability through a subcritical Neimark bifurcation. The present paper focuses some global bifurcations, which precede the Neimark bifurcation, and produce other attractors which coexist with the still attractive Cournot fixed point.

[1]  Robert Sörensson Estimation of interregional empty rail freight car flows , 2002 .

[2]  J. Johansson,et al.  Estimation of hedonic prices for co-operative flats in the city of Umeå with spatial autoregressive GMM , 2001 .

[3]  Tönu Puu,et al.  Attractors, Bifurcations, & Chaos: Nonlinear Phenomena in Economics , 2000 .

[4]  G. F. Tudel,et al.  THE MEASUREMENT OF ON-FARM DIVERSIFICATION , 2000 .

[5]  James A. Yorke,et al.  Border-collision bifurcations including “period two to period three” for piecewise smooth systems , 1992 .

[6]  Population Changes in Rural Areas in Northern Sweden 1985-1995 , 1999 .

[7]  Patricia M. Morton Social Life and Urban Form in a Historical Perspective , 2002 .

[8]  Ott,et al.  Border-collision bifurcations: An explanation for observed bifurcation phenomena. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[9]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[10]  Jeanette Edblad The political economy of regional integration in developing countries , 1995 .

[11]  L. Gardini,et al.  Business Cycles : The Hicksian Floor-Roof Model Revisited , 2002 .

[12]  Augustin M. Cournot Cournot, Antoine Augustin: Recherches sur les principes mathématiques de la théorie des richesses , 2019, Die 100 wichtigsten Werke der Ökonomie.

[13]  H. G. Bothe Gumowski, I./Mira, C., Dynamique chaotique. Transformations ponctuelles, Transition Ordre‐Désordre. Toulouse, Cepadues Editions 1980. 480 S , 1981 .

[14]  James A. Yorke,et al.  BORDER-COLLISION BIFURCATIONS FOR PIECEWISE SMOOTH ONE-DIMENSIONAL MAPS , 1995 .

[15]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[16]  On the Determinants of Average Income Growth and Net Migration at the Municipal Level in Sweden , 2003 .

[17]  Tönu Puu,et al.  Chaos in duopoly pricing , 1991 .

[18]  David A. Rand,et al.  Exotic phenomena in games and duopoly models , 1978 .

[19]  Erik Bergkvist,et al.  Estimation of gravity models by OLS estimation, NLS estimation, Poisson, and Neural Network specifications , 1997 .

[20]  I. Layton,et al.  Socio-economic dimensions of agricultural diversification in Västerbotten, Northern Sweden , 2002 .

[21]  U. Lindgren Counter-Urban Migration in the Swedish Urban System , 2002 .

[22]  M. Olsson Institutional Change in the Russian Forest Sector : Stakeholder Participation in Forest Policy FormulationThe Case of Tomsk , 2003 .

[23]  H. Etzkowitz,et al.  Beyond Humboldt : Emergence of Academic Entrepreneurship in the U.S. and Sweden , 2001 .

[24]  Anna Norin,et al.  Cournot duopoly when the competitors operate under capacity constraints , 2003 .

[25]  Niklas Nordman Increasing Returns to Scale and Benefits to Traffic : A Spatial General Equilibrium Analysis in the Case of Two Primary Inputs , 1998 .

[26]  J. Lundberg Using spatial econometrics to analyse local growth in Sweden , 2006 .