The generating rank of the symplectic grassmannians: Hyperbolic and isotropic geometry
暂无分享,去创建一个
[1] Paul Li. On the Universal Embedding of the Sp2n(2) Dual Polar Space , 2001, J. Comb. Theory, Ser. A.
[2] R. Blok. On geometries related to buildings , 1999 .
[3] Aart Blokhuis,et al. The Universal Embedding Dimension of the Binary Symplectic Dual Polar Space , 2003, Discret. Math..
[4] R. Blok. The Generating Rank of the Symplectic Line-Grassmannian , 2003 .
[5] Paul Li. On the Universal Embedding of the U2n (2) Dual Polar Space , 2002, J. Comb. Theory, Ser. A.
[6] Andries E. Brouwer,et al. Spanning point-line geometries in buildings of spherical type , 1998 .
[7] Michael Aschbacher,et al. Corrections to “Involutions in Chevalley groups over fields of even order” , 1976, Nagoya Mathematical Journal.
[8] Bruce N. Cooperstein. On the Generation of Dual Polar Spaces of Symplectic Type over Finite Fields , 1998, J. Comb. Theory, Ser. A.
[9] Alexander Premet,et al. The weyl modules and the irreducible representations of the symplectic group with the fundamental highest weights , 1983 .
[10] Antonio Pasini,et al. Point-Line Geometries with a Generating Set that Depends on the Underlying Field , 2001 .
[11] B. Cooperstein. Generating long root subgroup geometries of classical groups over finite prime fields , 1998 .
[12] Bruce N. Cooperstein. On the Generation of Some Dual Polar Spaces of Symplectic Type OverGF(2) , 1997, Eur. J. Comb..
[13] Ernest E. Shult,et al. Frames and bases of Lie incidence geometries , 1997 .