Maturation of obligatory auditory responses and their neural sources: Evidence from EEG and MEG

[1]  D. Bishop,et al.  Auditory Development between 7 and 11 Years: An Event-Related Potential (ERP) Study , 2011, PloS one.

[2]  E. Schröger,et al.  Processing of novel identifiability and duration in children and adults , 2011, Biological Psychology.

[3]  Seppo P. Ahlfors,et al.  Sensitivity of MEG and EEG to Source Orientation , 2010, Brain Topography.

[4]  D. Bishop,et al.  Maturation of auditory temporal integration and inhibition assessed with event-related potentials (ERPs) , 2010, BMC Neuroscience.

[5]  Blake W. Johnson,et al.  Measurement of brain function in pre-school children using a custom sized whole-head MEG sensor array , 2010, Clinical Neurophysiology.

[6]  F. Smulders Simplifying jackknifing of ERPs and getting more out of it: retrieving estimates of participants' latencies. , 2010, Psychophysiology.

[7]  E. Halgren,et al.  Cancellation of EEG and MEG signals generated by extended and distributed sources , 2009, Human brain mapping.

[8]  R. Kotecha,et al.  Modeling the Developmental Patterns of Auditory Evoked Magnetic Fields in Children , 2009, PloS one.

[9]  T. Picton,et al.  Age-related changes in transient and oscillatory brain responses to auditory stimulation during early adolescence. , 2009, Developmental science.

[10]  M. Steinschneider,et al.  The maturation of human evoked brain potentials to sounds presented at different stimulus rates , 2008, Hearing Research.

[11]  Shu-Chen Li,et al.  Electrophysiological correlates of selective attention: A lifespan comparison , 2008, BMC Neuroscience.

[12]  Michael J. Martinez,et al.  Bias between MNI and Talairach coordinates analyzed using the ICBM‐152 brain template , 2007, Human brain mapping.

[13]  I. Winkler,et al.  MMN or no MMN: no magnitude of deviance effect on the MMN amplitude. , 2007, Psychophysiology.

[14]  D. Bishop,et al.  Maturation of the long-latency auditory ERP: step function changes at start and end of adolescence , 2007, Developmental science.

[15]  Angela D. Friederici,et al.  Localizing pre-attentive auditory memory-based comparison: Magnetic mismatch negativity to pitch change , 2007, NeuroImage.

[16]  T. Picton,et al.  Age-related changes in transient and oscillatory brain responses to auditory stimulation in healthy adults 19-45 years old. , 2007, Cerebral cortex.

[17]  Margot J. Taylor,et al.  Electrophysiological Evaluation of Human Brain Development , 2007, Developmental neuropsychology.

[18]  P. Newall,et al.  Refractory effects on auditory-evoked responses in children with reading disorders , 2007, Neuroreport.

[19]  F. Linthicum,et al.  The human auditory system: A timeline of development , 2007, International journal of audiology.

[20]  J. Eggermont,et al.  Auditory Evoked Potentials: Basic Principles and Clinical Application , 2006 .

[21]  J. Wunderlich,et al.  Maturation of CAEP in infants and children: A review , 2006, Hearing Research.

[22]  R. Shepherd,et al.  Maturation of the cortical auditory evoked potential in infants and young children , 2006, Hearing Research.

[23]  Blaise Yvert,et al.  Localization of human supratemporal auditory areas from intracerebral auditory evoked potentials using distributed source models , 2005, NeuroImage.

[24]  K. Palomäki,et al.  Spatial processing in human auditory cortex: the effects of 3D, ITD, and ILD stimulation techniques. , 2005, Brain research. Cognitive brain research.

[25]  R. Bakeman Recommended effect size statistics for repeated measures designs , 2005, Behavior research methods.

[26]  M. Westerfield,et al.  ERPs differentiate syllable and nonphonetic sound processing in children and adults. , 2005, Psychophysiology.

[27]  M. Dorman,et al.  Developmental changes in refractoriness of the cortical auditory evoked potential , 2005, Clinical Neurophysiology.

[28]  W. Roberts,et al.  Prominence of M50 auditory evoked response over M100 in childhood and autism , 2004, Neuroreport.

[29]  A. M. Dale,et al.  A hybrid approach to the skull stripping problem in MRI , 2004, NeuroImage.

[30]  Arnaud Delorme,et al.  EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis , 2004, Journal of Neuroscience Methods.

[31]  D. Cheyne,et al.  Localization of auditory N1 in children using MEG: source modeling issues. , 2003, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[32]  R. Ilmoniemi,et al.  Grammar Processing Outside the Focus of Attention: an MEG Study , 2003, Journal of Cognitive Neuroscience.

[33]  S. Taulu,et al.  Suppression of Interference and Artifacts by the Signal Space Separation Method , 2003, Brain Topography.

[34]  H. Shibasaki,et al.  Maturational change of parallel auditory processing in school-aged children revealed by simultaneous recording of magnetic and electric cortical responses , 2002, Clinical Neurophysiology.

[35]  R. Näätänen,et al.  Maturation of cortical sound processing as indexed by event-related potentials , 2002, Clinical Neurophysiology.

[36]  J. Eggermont,et al.  Maturation of human central auditory system activity: separating auditory evoked potentials by dipole source modeling , 2002, Clinical Neurophysiology.

[37]  J. Eggermont,et al.  The Neurophysiology of Auditory Perception: From Single Units to Evoked Potentials , 2002, Audiology and Neurotology.

[38]  Jean K. Moore,et al.  Cytoarchitectural and Axonal Maturation in Human Auditory Cortex , 2001, Journal of the Association for Research in Otolaryngology.

[39]  J. Eggermont,et al.  Of Kittens and Kids: Altered Cortical Maturation following Profound Deafness and Cochlear Implant Use , 2001, Audiology and Neurotology.

[40]  D. Kurtzberg,et al.  Spatiotemporal maturation of the central and lateral N1 components to tones. , 2001, Brain research. Developmental brain research.

[41]  E. Schröger,et al.  Is there pre-attentive memory-based comparison of pitch? , 2001, Psychophysiology.

[42]  P. Marquis,et al.  Intracerebral Evoked Potentials in Pitch Perception Reveal a Functional Asymmetry of the Human Auditory Cortex , 2001, Annals of the New York Academy of Sciences.

[43]  R. Uwer,et al.  The development of auditory evoked dipole source activity from childhood to adulthood , 2000, Clinical Neurophysiology.

[44]  J L Lancaster,et al.  Automated Talairach Atlas labels for functional brain mapping , 2000, Human brain mapping.

[45]  M. Taylor,et al.  Tracking the development of the N1 from age 3 to adulthood: an examination of speech and non-speech stimuli , 2000, Clinical Neurophysiology.

[46]  J. Eggermont,et al.  Maturation of human central auditory system activity: evidence from multi-channel evoked potentials , 2000, Clinical Neurophysiology.

[47]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[48]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[49]  R. Näätänen,et al.  Interstimulus interval and auditory event-related potentials in children: evidence for multiple generators. , 1998, Electroencephalography and clinical neurophysiology.

[50]  P. Teale,et al.  Developmental changes in refractoriness of the neuromagnetic M100 in children , 1998, Neuroreport.

[51]  J. Karhu,et al.  Dual cerebral processing of elementary auditory input in children , 1997, Neuroreport.

[52]  R. Barry,et al.  Age-related changes in child and adolescent event-related potential component morphology, amplitude and latency to standard and target stimuli in an auditory oddball task. , 1996, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[53]  D. Kennedy,et al.  The human brain age 7-11 years: a volumetric analysis based on magnetic resonance images. , 1996, Cerebral cortex.

[54]  I. Tonnquist-Uhlén,et al.  Topography of auditory evoked long-latency potentials in normal children, with particular reference to the N1 component. , 1995, Electroencephalography and clinical neurophysiology.

[55]  O. Salonen,et al.  Auditory Evoked Magnetic Fields to Tones and Pseudowords in Healthy Children and Adults , 1995, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[56]  H. G. Vaughan,et al.  Developmental Studies and Clinical Application of Mismatch Negativity: Problems and Prospects , 1995, Ear and hearing.

[57]  P. Korpilahti,et al.  Auditory ERP components and mismatch negativity in dysphasic children. , 1994, Electroencephalography and clinical neurophysiology.

[58]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[59]  M. Hämäläinen,et al.  Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data , 1989, IEEE Transactions on Biomedical Engineering.

[60]  E. N. Sokolov,et al.  Frequency and location specificity of the human vertex N1 wave. , 1988, Electroencephalography and clinical neurophysiology.

[61]  E. Lettich,et al.  Modified Nomenclature for the “10%” Electrode System1 , 1988 .

[62]  R D Pascual-Marqui,et al.  Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. , 2002, Methods and findings in experimental and clinical pharmacology.

[63]  A. Dale,et al.  High‐resolution intersubject averaging and a coordinate system for the cortical surface , 1999, Human brain mapping.

[64]  C. Barthélémy,et al.  Temporal prominence of auditory evoked potentials (N1 wave) in 4-8-year-old children. , 1997, Psychophysiology.

[65]  D. Woods The component structure of the N1 wave of the human auditory evoked potential. , 1995, Electroencephalography and clinical neurophysiology. Supplement.

[66]  S. Hillyard,et al.  Human auditory evoked potentials. I. Evaluation of components. , 1974, Electroencephalography and clinical neurophysiology.