Topological semimetal phases in a family of monolayer X3YZ

[1]  Yugui Yao,et al.  Weyl Monoloop Semi-Half-Metal and Tunable Anomalous Hall Effect. , 2021, Nano letters.

[2]  P. Mandal,et al.  Signature of topological nontrivial band structure in Ta3SiTe6 , 2021, 2106.14951.

[3]  J. Jia,et al.  Inherited weak topological insulator signatures in the topological hourglass semimetal Nb3XTe6 (X=Si, Ge) , 2021, Physical Review B.

[4]  Zhenxiang Cheng,et al.  Unique topological nodal line states and associated exceptional thermoelectric power factor platform in Nb3GeTe6 monolayer and bulk. , 2020, Nanoscale.

[5]  X. Wan,et al.  Magneto-transport and Shubnikov-de Haas oscillations in the layered ternary telluride topological semimetal candidate Ta3SiTe6 , 2019, Applied Physics Letters.

[6]  Timur K. Kim,et al.  Observation of band crossings protected by nonsymmorphic symmetry in the layered ternary telluride Ta3SiTe6 , 2018, Physical Review B.

[7]  Wenshuai Gao,et al.  Magnetoresistance and Shubnikov–de Haas oscillations in layered Nb3SiTe6 thin flakes , 2018, Physical Review B.

[8]  Quansheng Wu,et al.  Observation of a nodal chain with Dirac surface states in Ti B 2 , 2018, 1805.04644.

[9]  Y. Liu,et al.  Type-I and type-II nodal lines coexistence in the antiferromagnetic monolayer CrAs2 , 2018, Physical Review B.

[10]  Zengsheng Ma,et al.  Coexistence of open and closed type nodal line topological semimetals in two dimensional B2C , 2018 .

[11]  Yugui Yao,et al.  Nonsymmorphic-symmetry-protected hourglass Dirac loop, nodal line, and Dirac point in bulk and monolayer X 3 SiTe 6 ( X = Ta, Nb) , 2017, 1710.08376.

[12]  Matthias Troyer,et al.  WannierTools: An open-source software package for novel topological materials , 2017, Comput. Phys. Commun..

[13]  Benedikt Ernst,et al.  A three-dimensional magnetic topological phase , 2017, 1712.09992.

[14]  Xiaoming Zhang,et al.  Topological Type-II Nodal Line Semimetal and Dirac Semimetal State in Stable Kagome Compound Mg3Bi2. , 2017, The journal of physical chemistry letters.

[15]  J. Bell,et al.  First-Principles Prediction of Spin-Polarized Multiple Dirac Rings in Manganese Fluoride. , 2017, Physical review letters.

[16]  Bohm-Jung Yang,et al.  Dirac node lines in two-dimensional Lieb lattices. , 2017, Nanoscale.

[17]  X. Dai,et al.  Topological nodal line semimetals predicted from first-principles calculations , 2017 .

[18]  Yugui Yao,et al.  Type-II nodal loops: Theory and material realization , 2017, 1705.02076.

[19]  H. Min,et al.  Electrodynamics on Fermi Cyclides in Nodal Line Semimetals. , 2017, Physical review letters.

[20]  Y. Mokrousov,et al.  Two-dimensional topological nodal line semimetal in layered X 2 Y ( X = Ca , Sr, and Ba; Y = As , Sb, and Bi) , 2017, 1702.04634.

[21]  T. Qian,et al.  Experimental Observation of Three-Component 'New Fermions' in Topological Semimetal MoP , 2016, 1610.08877.

[22]  Z. Mao,et al.  Nearly massless Dirac fermions and strong Zeeman splitting in the nodal-line semimetal ZrSiS probed by de Haas–van Alphen quantum oscillations , 2016, 1604.01567.

[23]  X. Dai,et al.  Coexistence of Weyl fermion and massless triply degenerate nodal points , 2016, 1605.05186.

[24]  Quansheng Wu,et al.  Triple Point Topological Metals , 2016, 1605.04653.

[25]  H. Jeng,et al.  Superconducting topological surface states in the noncentrosymmetric bulk superconductor PbTaSe2 , 2016, Science Advances.

[26]  Barry Bradlyn,et al.  Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals , 2016, Science.

[27]  Su-Yang Xu,et al.  Topological nodal-line fermions in spin-orbit metal PbTaSe2 , 2016, Nature Communications.

[28]  T. Heikkila,et al.  Nexus and Dirac lines in topological materials , 2015, 1505.03277.

[29]  Heng Ji,et al.  Enhanced electron coherence in atomically thin Nb3SiTe6 , 2015, Nature Physics.

[30]  X. Dai,et al.  Observation of Weyl nodes in TaAs , 2015, Nature Physics.

[31]  X. Dai,et al.  Observation of the Chiral-Anomaly-Induced Negative Magnetoresistance in 3D Weyl Semimetal TaAs , 2015, 1503.01304.

[32]  Xianhui Chen Experimental discovery of Weyl semimetal TaAs , 2015, Science China Materials.

[33]  Shuang Jia,et al.  Discovery of a Weyl fermion semimetal and topological Fermi arcs , 2015, Science.

[34]  X. Dai,et al.  Weyl Semimetal Phase in Noncentrosymmetric Transition-Metal Monophosphides , 2014, 1501.00060.

[35]  Y. Kawazoe,et al.  Topological node-line semimetal in three-dimensional graphene networks , 2014, 1411.2175.

[36]  B. Uchoa,et al.  Line of Dirac Nodes in Hyperhoneycomb Lattices. , 2014, Physical review letters.

[37]  Zhenyu Li,et al.  Obtaining two-dimensional electron gas in free space without resorting to electron doping: an electride based design. , 2014, Journal of the American Chemical Society.

[38]  Z. J. Wang,et al.  A stable three-dimensional topological Dirac semimetal Cd3As2. , 2014, Nature materials.

[39]  Z. J. Wang,et al.  Discovery of a Three-Dimensional Topological Dirac Semimetal, Na3Bi , 2013, Science.

[40]  Binghai Yan,et al.  Large-gap quantum spin Hall insulators in tin films. , 2013, Physical review letters.

[41]  Quansheng Wu,et al.  Three-dimensional Dirac semimetal and quantum transport in Cd3As2 , 2013, 1305.6780.

[42]  Yan Sun,et al.  Dirac semimetal and topological phase transitions in A 3 Bi ( A = Na , K, Rb) , 2012, 1202.5636.

[43]  C. Kane,et al.  Dirac semimetal in three dimensions. , 2011, Physical review letters.

[44]  L. Balents,et al.  Topological nodal semimetals , 2011, 1110.1089.

[45]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[46]  K. Novoselov,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[48]  T. Hertel,et al.  Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons , 2003, cond-mat/0308451.

[49]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[50]  N. Marzari,et al.  Maximally localized Wannier functions for entangled energy bands , 2001, cond-mat/0108084.

[51]  Stefano de Gironcoli,et al.  Phonons and related crystal properties from density-functional perturbation theory , 2000, cond-mat/0012092.

[52]  Andreas Savin,et al.  ELF: The Electron Localization Function , 1997 .

[53]  N. Marzari,et al.  Maximally localized generalized Wannier functions for composite energy bands , 1997, cond-mat/9707145.

[54]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[55]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[56]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[57]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[58]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .