Systematic strong coupling expansion for out-of-equilibrium dynamics in the Lieb-Liniger model

We consider the time evolution of local observables after an interaction quench in the repulsive Lieb-Liniger model. The system is initialized in the ground state for vanishing interaction and then time-evolved with the Lieb-Liniger Hamiltonian for large, finite interacting strength c. We employ the Quench Action approach to express the full time evolution of local observables in terms of sums over energy eigenstates and then derive the leading terms of a 1/c expansion for several one and two-point functions as a function of time t>0 after the quantum quench. We observe delicate cancellations of contributions to the spectral sums that depend on the details of the choice of representative state in the Quench Action approach and our final results are independent of this choice. Our results provide a highly non-trivial confirmation of the typicality assumptions underlying the Quench Action approach.

[1]  B. Pozsgay Quantum quenches and generalized Gibbs ensemble in a Bethe Ansatz solvable lattice model of interacting bosons , 2014, 1407.8344.

[2]  C. Kristjansen,et al.  AdS/dCFT one-point functions of the SU(3) sector , 2016, 1607.03123.

[3]  P. Calabrese,et al.  Quantum quench in the transverse field Ising chain: I. Time evolution of order parameter correlators , 2011, Physical review letters.

[4]  Tim Langen,et al.  Ultracold Atoms Out of Equilibrium , 2014, 1408.6377.

[5]  J. Caux,et al.  Analytical expression for a post-quench time evolution of the one-body density matrix of one-dimensional hard-core bosons , 2014, 1410.0620.

[6]  F. Essler,et al.  Finite-temperature dynamical structure factor of the Heisenberg-Ising chain , 2009, 0902.2402.

[7]  E. Lieb Exact Analysis of an Interacting Bose Gas. II. The Excitation Spectrum , 1963 .

[8]  J. Caux,et al.  Quench action approach for releasing the Néel state into the spin-1/2 XXZ chain , 2014, 1408.5075.

[9]  V. Korepin,et al.  Quantum Inverse Scattering Method and Correlation Functions , 1993, cond-mat/9301031.

[10]  J. Caux,et al.  Relaxation dynamics of local observables in integrable systems , 2015, 1505.03080.

[11]  S. Sotiriadis Non-Equilibrium Steady State of the Lieb-Liniger model: multiple-integral representation of the time evolved many-body wave-function , 2020, 2010.03553.

[12]  G. Lang Conjectures about the structure of strong- and weak-coupling expansions of a few ground-state observables in the Lieb-Liniger and Yang-Gaudin models , 2019, SciPost Physics.

[13]  D. Schuricht,et al.  Dynamics in the Ising field theory after a quantum quench , 2012, 1203.5080.

[14]  J. Cardy,et al.  Quantum quenches in 1  +  1 dimensional conformal field theories , 2016, 1603.02889.

[15]  B. Pozsgay The generalized Gibbs ensemble for Heisenberg spin chains , 2013, 1304.5374.

[16]  P. Calabrese,et al.  Relaxation after quantum quenches in the spin-1/2 Heisenberg XXZ chain , 2013, 1311.5216.

[18]  N. Andrei,et al.  Failure of the local generalized Gibbs ensemble for integrable models with bound states , 2014 .

[19]  F. Essler,et al.  How order melts after quantum quenches , 2019, Physical Review B.

[20]  E. Demler,et al.  Relaxation Dynamics and Pre-thermalization in an Isolated Quantum System , 2012 .

[21]  Jens Eisert,et al.  Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems , 2015, Reports on progress in physics. Physical Society.

[22]  N. Slavnov Calculation of scalar products of wave functions and form factors in the framework of the alcebraic Bethe ansatz , 1989 .

[23]  S. Evangelisti Semi-classical theory for quantum quenches in the O(3) non-linear sigma model , 2012, 1210.4028.

[24]  S. Sotiriadis Memory-preserving equilibration after a quantum quench in a one-dimensional critical model , 2015, 1507.07915.

[25]  D. Weiss,et al.  A quantum Newton's cradle , 2006, Nature.

[26]  J. Cardy,et al.  Time dependence of correlation functions following a quantum quench. , 2006, Physical review letters.

[27]  P. Calabrese,et al.  Exact formulas for the form factors of local operators in the Lieb–Liniger model , 2015, 1506.06539.

[28]  J. Caux,et al.  Solution for an interaction quench in the Lieb-Liniger Bose gas , 2013, 1308.4310.

[29]  J. Caux The Quench Action , 2016, 1603.04689.

[30]  F. Essler,et al.  A systematic $1/c$-expansion of form factor sums for dynamical correlations in the Lieb-Liniger model , 2020, 2007.15396.

[31]  D. Schuricht,et al.  Quantum quench in the sine-Gordon model , 2014, 1405.4813.

[32]  U. Schollwock,et al.  Quantum dynamics of a mobile spin impurity , 2012, Nature Physics.

[33]  J. Caux,et al.  Interaction quenches in the one-dimensional Bose gas , 2013, 1305.7202.

[34]  T. Prosen,et al.  Complete Generalized Gibbs Ensembles in an Interacting Theory. , 2015, Physical review letters.

[35]  Heiko Rieger,et al.  Semiclassical theory for quantum quenches in finite transverse Ising chains , 2011, 1106.5248.

[36]  F. Essler,et al.  Time evolution of local observables after quenching to an integrable model. , 2013, Physical review letters.

[37]  F. Essler,et al.  Quench dynamics and relaxation in isolated integrable quantum spin chains , 2016, 1603.06452.

[38]  D. Schuricht,et al.  Quantum quench in the attractive regime of the sine-Gordon model , 2017, 1707.09218.

[39]  M. Rigol,et al.  From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics , 2015, 1509.06411.

[40]  K. Kozlowski On form factors of the conjugated field in the nonlinear Schrödinger model , 2011, 1105.1052.

[41]  B. Pozsgay Overlaps between eigenstates of the XXZ spin-1/2 chain and a class of simple product states , 2013, 1309.4593.

[42]  D. W. Robinson,et al.  The finite group velocity of quantum spin systems , 1972 .

[43]  V. Eisler,et al.  Real-time dynamics in a strongly interacting bosonic hopping model: global quenches and mapping to the XX chain , 2016, 1602.03065.

[44]  Vladimir E. Korepin,et al.  Calculation of norms of Bethe wave functions , 1982 .

[45]  Alessandro Silva,et al.  Colloquium: Nonequilibrium dynamics of closed interacting quantum systems , 2010, 1007.5331.

[46]  Immanuel Bloch,et al.  Collapse and revival of the matter wave field of a Bose–Einstein condensate , 2002, Nature.

[47]  P. Calabrese,et al.  Quantum quenches to the attractive one-dimensional Bose gas: exact results , 2016, 1604.08141.

[48]  G. Zaránd,et al.  Quantum quenches in the sine-Gordon model: A semiclassical approach. , 2015, Physical review. E.

[49]  G. Takács,et al.  Quenching the XXZ spin chain: quench action approach versus generalized Gibbs ensemble , 2014, 1412.4787.

[50]  M. Rigol,et al.  Quenching the anisotropic heisenberg chain: exact solution and generalized Gibbs ensemble predictions. , 2014, Physical review letters.

[51]  D. Horváth,et al.  Overlap singularity and time evolution in integrable quantum field theory , 2018, Journal of High Energy Physics.

[52]  J. Schmiedmayer,et al.  Non-equilibrium coherence dynamics in one-dimensional Bose gases. , 2007, Nature.

[53]  S. Mandt,et al.  Fermionic transport and out-of-equilibrium dynamics in a homogeneous Hubbard model with ultracold atoms , 2012, Nature Physics.

[54]  B. Doyon Exact large-scale correlations in integrable systems out of equilibrium , 2017, SciPost Physics.

[55]  L. Piroli,et al.  Non-analytic behavior of the Loschmidt echo in XXZ spin chains: Exact results , 2018, Nuclear Physics B.

[56]  K. Matsuno Equilibration , 2018, Protobiology.

[57]  F. Essler,et al.  Stationary behaviour of observables after a quantum quench in the spin-1/2 Heisenberg XXZ chain , 2013, 1305.0468.

[58]  P. Calabrese,et al.  Exact solution for the quench dynamics of a nested integrable system , 2017, 1705.00851.

[59]  J. Eisert,et al.  Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas , 2011, Nature Physics.

[60]  J. Schmiedmayer,et al.  Prethermalization and universal dynamics in near-integrable quantum systems , 2016, 1603.09385.

[61]  E. Ilievski,et al.  String-charge duality in integrable lattice models , 2015, 1512.04454.

[62]  L. Piroli,et al.  What is an integrable quench , 2017, 1709.04796.

[63]  N. Slavnov Nonequal-time current correlation function in a one-dimensional Bose gas , 1990 .

[64]  T. Prosen,et al.  Quasilocal charges in integrable lattice systems , 2016, 1603.00440.

[65]  B. Pozsgay Overlaps with arbitrary two-site states in the XXZ spin chain , 2018, 1801.03838.

[66]  Quantum projectors and local operators in lattice integrable models , 2003, hep-th/0304205.

[67]  G. Takács,et al.  Correlations after quantum quenches in the XXZ spin chain: failure of the generalized Gibbs ensemble. , 2014, Physical review letters.

[68]  I. Mazets,et al.  Relaxation and Prethermalization in an Isolated Quantum System , 2011, Science.

[69]  E. Lieb,et al.  EXACT ANALYSIS OF AN INTERACTING BOSE GAS. I. THE GENERAL SOLUTION AND THE GROUND STATE , 1963 .

[70]  P. Calabrese,et al.  Quantum quenches in the transverse field Ising chain: II. Stationary state properties , 2012, 1205.2211.

[71]  Marcos Rigol,et al.  Relaxation in a completely integrable many-body quantum system: an ab initio study of the dynamics of the highly excited states of 1D lattice hard-core bosons. , 2007, Physical review letters.

[72]  Jacopo Viti,et al.  Stationary states in a free fermionic chain from the quench action method , 2014, 1409.8482.

[73]  P. Calabrese,et al.  Analytic results for a quantum quench from free to hard-core one dimensional bosons , 2013, 1307.2142.

[74]  M. Fagotti,et al.  The Folded Spin-1/2 XXZ Model: I. Diagonalisation, Jamming, and Ground State Properties , 2020, 2009.04995.

[75]  J. Cardy,et al.  Quantum quenches in extended systems , 2007, 0704.1880.

[76]  Alexander L. Gaunt,et al.  Critical dynamics of spontaneous symmetry breaking in a homogeneous Bose gas , 2014, Science.

[77]  B. Bertini Approximate light cone effects in a nonrelativistic quantum field theory after a local quench , 2016, 1611.05030.

[78]  A. Daley,et al.  Quantum quench in an atomic one-dimensional Ising chain. , 2013, Physical review letters.

[79]  J. Caux,et al.  A Gaudin-like determinant for overlaps of Néel and XXZ Bethe states , 2014, 1401.2877.

[80]  C. Clark,et al.  Generalized thermalization in an integrable lattice system. , 2010, Physical review letters.

[81]  Immanuel Bloch,et al.  Light-cone-like spreading of correlations in a quantum many-body system , 2011, Nature.

[82]  L. Piroli,et al.  Integrable Matrix Product States from boundary integrability , 2018, SciPost Physics.

[83]  J. Cardy Quantum quenches to a critical point in one dimension: some further results , 2015, 1507.07266.

[84]  B. Doyon,et al.  Generalized Hydrodynamics on an Atom Chip. , 2018, Physical review letters.