The role of two branched‐chain amino acid transporters in Staphylococcus aureus growth, membrane fatty acid composition and virulence

The branched‐chain amino acids (BCAAs) are vital to both growth and virulence of the human pathogen Staphylococcus aureus. In addition to supporting protein synthesis, the BCAAs serve as precursors for branched‐chain fatty acids (BCFAs), which are predominant membrane fatty acids, and, in association with the global regulatory protein CodY, the BCAAs are key co‐regulators of virulence factors. Despite these critical functions, S. aureus represses Leu and Val synthesis, instead preferring to acquire them from the extracellular milieu. We previously identified BrnQ1 as a BCAA transporter, yet a brnQ1 mutant remained capable of BCAA acquisition. Here, we describe BcaP as an additional BCAA transporter, and determine that it plays a secondary role to BrnQ1 during S. aureus growth in a chemically defined medium. Furthermore, membrane fatty acid composition analysis revealed that BrnQ1, and not BcaP, is required for transporting Leu and Val to be used for iso‐BCFA synthesis. Despite a predominant role for BrnQ1 in vitro, both BrnQ1 and BcaP are required for S. aureus fitness in vivo in a hematogenous spread infection model and a nasal colonisation model. These data demonstrate the importance of BrnQ1 and BcaP for growth, environmental adaptation and virulence of S. aureus.

[1]  A. Singh,et al.  Insertional Inactivation of Branched-Chain α-Keto Acid Dehydrogenase in Staphylococcus aureus Leads to Decreased Branched-Chain Membrane Fatty Acid Content and Increased Susceptibility to Certain Stresses , 2008, Applied and Environmental Microbiology.

[2]  Nicholas R. Waters,et al.  A spectrum of CodY activities drives metabolic reorganization and virulence gene expression in Staphylococcus aureus , 2016, Molecular microbiology.

[3]  A. Sonenshein CodY, a global regulator of stationary phase and virulence in Gram-positive bacteria. , 2005, Current opinion in microbiology.

[4]  A. Matin,et al.  Insufficient Expression of the ilv-leu Operon Encoding Enzymes of Branched-Chain Amino Acid Biosynthesis Limits Growth of a Bacillus subtilis ccpA Mutant , 2002, Journal of bacteriology.

[5]  C. Gatto,et al.  Short branched-chain C6 carboxylic acids result in increased growth, novel 'unnatural' fatty acids and increased membrane fluidity in a Listeria monocytogenes branched-chain fatty acid-deficient mutant. , 2015, Biochimica et biophysica acta.

[6]  P. Vanhems,et al.  Association between Staphylococcus aureus strains carrying gene for Panton-Valentine leukocidin and highly lethal necrotising pneumonia in young immunocompetent patients , 2002, The Lancet.

[7]  D. Bayles,et al.  Precursor and temperature modulation of fatty acid composition and growth of Listeria monocytogenes cold-sensitive mutants with transposon-interrupted branched-chain alpha-keto acid dehydrogenase. , 2005, Microbiology.

[8]  O. Kuipers,et al.  University of Groningen Identification and functional characterization of the Lactococcus lactis CodY-regulated branched-chain amino acid permease BcaP ( CtrA ) , 2006 .

[9]  M. Marahiel,et al.  Cold Shock Response of Bacillus subtilis: Isoleucine-Dependent Switch in the Fatty Acid Branching Pattern for Membrane Adaptation to Low Temperatures , 1999, Journal of bacteriology.

[10]  C. Wolz,et al.  Temporal expression of adhesion factors and activity of global regulators during establishment of Staphylococcus aureus nasal colonization. , 2010, The Journal of infectious diseases.

[11]  T. Standiford,et al.  Fatty Acids Regulate Stress Resistance and Virulence Factor Production for Listeria monocytogenes , 2012, Journal of bacteriology.

[12]  P. François,et al.  CodY in Staphylococcus aureus: a Regulatory Link between Metabolism and Virulence Gene Expression , 2009, Journal of bacteriology.

[13]  Eric P Skaar,et al.  Bacillithiol has a role in Fe–S cluster biogenesis in Staphylococcus aureus , 2015, Molecular microbiology.

[14]  A. Hagting,et al.  Cloning and characterization of brnQ, a gene encoding a low-affinity, branched-chain amino acid carrier in Lactobacillus delbrdückii subsp. lactic DSM7290 , 1995, Molecular and General Genetics MGG.

[15]  A. Sonenshein,et al.  Genome-wide identification of Bacillus subtilis CodY-binding sites at single-nucleotide resolution , 2013, Proceedings of the National Academy of Sciences.

[16]  M. Schmid,et al.  Large-Scale Identification of Genes Required for Full Virulence of Staphylococcus aureus , 2004, Journal of bacteriology.

[17]  Kenneth W. Bayles,et al.  A Genetic Resource for Rapid and Comprehensive Phenotype Screening of Nonessential Staphylococcus aureus Genes , 2013, mBio.

[18]  R. Altenbern,et al.  Cerulenin-Inhibited Cells of Staphylococcus aureus Resume Growth When Supplemented with Either a Saturated or an Unsaturated Fatty Acid , 1977, Antimicrobial Agents and Chemotherapy.

[19]  G. Butcher,et al.  Sensitivity of Staphylococcus aureus to unsaturated fatty acids. , 1976, Journal of general microbiology.

[20]  V. Juillard,et al.  Only One of Four Oligopeptide Transport Systems Mediates Nitrogen Nutrition in Staphylococcus aureus , 2007, Journal of bacteriology.

[21]  D. Segrè,et al.  Hierarchical expression of genes controlled by the Bacillus subtilis global regulatory protein CodY , 2014, Proceedings of the National Academy of Sciences.

[22]  Michael Lalk,et al.  Nutrient Limitation Governs Staphylococcus aureus Metabolism and Niche Adaptation in the Human Nose , 2014, PLoS pathogens.

[23]  A. Sonenshein,et al.  Activation of the Bacillus subtilis global regulator CodY by direct interaction with branched‐chain amino acids , 2004, Molecular microbiology.

[24]  Anthony J. Wilkinson,et al.  Genetic and Biochemical Analysis of the Interaction of Bacillus subtilis CodY with Branched-Chain Amino Acids , 2009, Journal of bacteriology.

[25]  Junshu Yang,et al.  Determination of essentiality and regulatory function of staphylococcal YeaZ in branched-chain amino acid biosynthesis , 2015, Virulence.

[26]  L. Shaw,et al.  The impact of CodY on virulence determinant production in community‐associated methicillin‐resistant Staphylococcus aureus , 2012, Proteomics.

[27]  I. Konopásek,et al.  Metabolic control of the membrane fluidity in Bacillus subtilis during cold adaptation. , 2008, Biochimica et biophysica acta.

[28]  S. Ray,et al.  Emergence of Community-Acquired Methicillin-Resistant Staphylococcus aureus USA 300 Clone as the Predominant Cause of Skin and Soft-Tissue Infections , 2006, Annals of Internal Medicine.

[29]  D. Holden,et al.  Identification of Staphylococcus aureus virulence genes in a murine model of bacteraemia using signature‐tagged mutagenesis , 1997, Molecular microbiology.

[30]  A. Sonenshein,et al.  Direct Targets of CodY in Staphylococcus aureus , 2010, Journal of bacteriology.

[31]  Adeline R. Whitney,et al.  Global Changes in Staphylococcus aureus Gene Expression in Human Blood , 2011, PloS one.

[32]  C. Nast,et al.  Carotenoid-Related Alteration of Cell Membrane Fluidity Impacts Staphylococcus aureus Susceptibility to Host Defense Peptides , 2010, Antimicrobial Agents and Chemotherapy.

[33]  A. Sonenshein,et al.  Interaction of Bacillus subtilis CodY with GTP , 2007, Journal of bacteriology.

[34]  V. Nizet,et al.  Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity , 2005, The Journal of experimental medicine.

[35]  M. O'Reilly,et al.  The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage , 1983, Nature.

[36]  B. Belitsky Role of Branched-Chain Amino Acid Transport in Bacillus subtilis CodY Activity , 2015, Journal of bacteriology.

[37]  Brad Spellberg,et al.  Necrotizing fasciitis caused by community-associated methicillin-resistant Staphylococcus aureus in Los Angeles. , 2005, The New England journal of medicine.

[38]  D. McDowell,et al.  Role of Branched-Chain Fatty Acids in pH Stress Tolerance in Listeria monocytogenes , 2006, Applied and Environmental Microbiology.

[39]  D. Heinrichs,et al.  Role of BrnQ1 and BrnQ2 in Branched-Chain Amino Acid Transport and Virulence in Staphylococcus aureus , 2014, Infection and Immunity.

[40]  W. Subczynski,et al.  Carotenoid-membrane interactions in liposomes: effect of dipolar, monopolar, and nonpolar carotenoids. , 2006, Acta biochimica Polonica.

[41]  A. Sonenshein,et al.  Staphylococcus aureus CodY Negatively Regulates Virulence Gene Expression , 2007, Journal of bacteriology.

[42]  A. Peschel,et al.  Staphyloxanthin Plays a Role in the Fitness of Staphylococcus aureus and Its Ability To Cope with Oxidative Stress , 2006, Infection and Immunity.

[43]  C. Nast,et al.  In Vitro Cross-Resistance to Daptomycin and Host Defense Cationic Antimicrobial Peptides in Clinical Methicillin-Resistant Staphylococcus aureus Isolates , 2011, Antimicrobial Agents and Chemotherapy.

[44]  B. McManus,et al.  The Human Serum Metabolome , 2011, PloS one.

[45]  A. Sonenshein,et al.  Intermediate Levels of Bacillus subtilis CodY Activity Are Required for Derepression of the Branched-Chain Amino Acid Permease, BraB , 2015, PLoS Genetics.

[46]  A. Singh,et al.  Influence of Fatty Acid Precursors, Including Food Preservatives, on the Growth and Fatty Acid Composition of Listeria monocytogenes at 37 and 10°C , 2010, Applied and Environmental Microbiology.

[47]  Fred C Tenover,et al.  Changes in the prevalence of nasal colonization with Staphylococcus aureus in the United States, 2001-2004. , 2008, The Journal of infectious diseases.

[48]  Yvonne Sun,et al.  Branched-Chain Fatty Acids Promote Listeria monocytogenes Intracellular Infection and Virulence , 2010, Infection and Immunity.

[49]  A. Sonenshein,et al.  Contributions of Multiple Binding Sites and Effector-Independent Binding to CodY-Mediated Regulation in Bacillus subtilis , 2010, Journal of bacteriology.

[50]  D. Heinrichs,et al.  Induction of the Staphylococcal Proteolytic Cascade by Antimicrobial Fatty Acids in Community Acquired Methicillin Resistant Staphylococcus aureus , 2012, PloS one.

[51]  Characterization of Staphylococcus aureus mutants expressing reduced susceptibility to common house‐cleaners , 2005, Journal of applied microbiology.

[52]  W. Hufnagle,et al.  Staphylococcus aureus genetic loci impacting growth and survival in multiple infection environments , 1998, Molecular microbiology.

[53]  Mohan G. Hebsur,et al.  Development and Characterization , 1998 .

[54]  M. Mori,et al.  Amino acid requirements for the growth and enterotoxin production by Staphylococcus aureus in chemically defined media. , 1997, International journal of food microbiology.

[55]  Kun Zhu,et al.  Exogenous Isoleucine and Fatty Acid Shortening Ensure the High Content of Anteiso-C15:0 Fatty Acid Required for Low-Temperature Growth of Listeria monocytogenes , 2005, Applied and Environmental Microbiology.

[56]  C. Gatto,et al.  Growth-Environment Dependent Modulation of Staphylococcus aureus Branched-Chain to Straight-Chain Fatty Acid Ratio and Incorporation of Unsaturated Fatty Acids , 2016, bioRxiv.

[57]  K. B. Kiser,et al.  Development and Characterization of aStaphylococcus aureus Nasal Colonization Model in Mice , 1999, Infection and Immunity.

[58]  J. Davies,et al.  Improved lux reporters for use in Staphylococcus aureus. , 2009, Plasmid.

[59]  T. Foster,et al.  An improved tetracycline-inducible expression vector for Staphylococcus aureus. , 2009, Plasmid.

[60]  A. Sonenshein,et al.  CodY Deletion Enhances In Vivo Virulence of Community-Associated Methicillin-Resistant Staphylococcus aureus Clone USA300 , 2012, Infection and Immunity.

[61]  P. Renault,et al.  Pleiotropic transcriptional repressor CodY senses the intracellular pool of branched‐chain amino acids in Lactococcus lactis , 2001, Molecular microbiology.

[62]  S. Kaplan,et al.  Severe Staphylococcal Sepsis in Adolescents in the Era of Community-Acquired Methicillin-Resistant Staphylococcus aureus , 2005, Pediatrics.

[63]  P. Drouin,et al.  Electron paramagnetic resonance studies of the membrane fluidity of the foodborne pathogenic psychrotroph Listeria monocytogenes. , 2000, Biochimica et biophysica acta.

[64]  D. Bayles,et al.  Critical role of anteiso-C15:0 fatty acid in the growth of Listeria monocytogenes at low temperatures , 1997, Applied and environmental microbiology.