Fractional modelling of Pennes’ bioheat transfer equation

A new mathematical model for Pennes’ bioheat equation using the methodology of fractional calculus was constructed. The thermal behavior in living tissue subjected to instantaneous surface heating was investigated. Numerical calculations were performed to study the temperature transients in the skin exposed to instantaneous surface heating. Some comparisons were shown in figures to estimate the effect the fractional order parameter α on the thermal wave. In this novel theory, the fractional parameter α is an indicator of bioheat efficiency in living tissues.

[1]  E. Wissler,et al.  Pennes' 1948 paper revisited. , 1998, Journal of applied physiology.

[2]  T. Shih,et al.  The impact of thermal wave characteristics on thermal dose distribution during thermal therapy: a numerical study. , 2005, Medical physics.

[3]  G. Lebon,et al.  Extended irreversible thermodynamics , 1993 .

[4]  M. K. Moallemi,et al.  Experimental evidence of hyperbolic heat conduction in processed meat , 1995 .

[5]  H. Lord,et al.  A GENERALIZED DYNAMICAL THEORY OF THERMOELASTICITY , 1967 .

[6]  Jun Zhang,et al.  Modeling and numerical simulation of bioheat transfer and biomechanics in soft tissue , 2005, Math. Comput. Model..

[7]  W. Kaminski Hyperbolic heat conduction equation for materials with a nonhomogeneous inner structure , 1990 .

[8]  Win-Li Lin,et al.  Analytical analysis of the Pennes bioheat transfer equation with sinusoidal heat flux condition on skin surface. , 2007, Medical engineering & physics.

[9]  William P. Roach,et al.  Empirical comparison of Pennes' bio-heat equation , 2009, BiOS.

[10]  D. Tzou,et al.  On the Wave Theory in Heat Conduction , 1994 .

[11]  Francesco Mainardi,et al.  On Mittag-Leffler-type functions in fractional evolution processes , 2000 .

[12]  Guy Jumarie,et al.  Derivation and solutions of some fractional Black-Scholes equations in coarse-grained space and time. Application to Merton's optimal portfolio , 2010, Comput. Math. Appl..

[13]  M. Caputo Linear Models of Dissipation whose Q is almost Frequency Independent-II , 1967 .

[14]  Jun Zhang,et al.  A two level finite difference scheme for one dimensional Pennes' bioheat equation , 2005, Appl. Math. Comput..

[15]  Y. Povstenko Fundamental solutions to time-fractional heat conduction equations in two joint half-lines , 2013 .

[16]  Yuriy Povstenko,et al.  Neumann boundary-value problems for a time-fractional diffusion-wave equation in a half-plane , 2012, Comput. Math. Appl..

[17]  David Jou,et al.  Understanding Non-equilibrium Thermodynamics , 2008 .

[18]  V. Kiryakova Generalized Fractional Calculus and Applications , 1993 .

[19]  I. Podlubny Fractional differential equations , 1998 .

[20]  G. Honig,et al.  A method for the numerical inversion of Laplace transforms , 1984 .

[21]  H. H. Pennes Analysis of tissue and arterial blood temperatures in the resting human forearm. 1948. , 1948, Journal of applied physiology.

[22]  Numerical Study of Heat Propagation in Living Tissue Subjected to Instantaneous Heating , 2009 .

[23]  Helmut D. Weymann,et al.  Finite Speed of Propagation in Heat Conduction, Diffusion, and Viscous Shear Motion , 1967 .

[24]  Magdy A. Ezzat,et al.  Magneto-thermoelasticity with thermoelectric properties and fractional derivative heat transfer , 2011 .

[25]  Niels Henrik Abel,et al.  Solution de quelques problèmes à l'aide d'intégrales définies , 2012 .

[26]  Y. Povstenko FRACTIONAL HEAT CONDUCTION EQUATION AND ASSOCIATED THERMAL STRESS , 2004 .

[27]  Jing Liu,et al.  Preliminary survey on the mechanisms of the wave-like behaviors of heat transfer in living tissues , 2000 .

[28]  Lisa X. Xu,et al.  New thermal wave aspects on burn evaluation of skin subjected to instantaneous heating , 1999, IEEE Transactions on Biomedical Engineering.

[29]  David Jou,et al.  Understanding Non-equilibrium Thermodynamics: Foundations, Applications, Frontiers , 2010 .

[30]  M. Ezzat Thermoelectric MHD non-Newtonian fluid with fractional derivative heat transfer , 2010 .