QSO MUSEUM I: a sample of 61 extended Ly α-emission nebulae surroundingz∼ 3 quasars

Motivated by the discovery of rare enormous Lyman α nebulae (ELAN) around z ∼ 2 quasars, we initiated a long-term campaign with the MUSE/VLT instrument to directly uncover the astrophysics of the gas around quasars. We present here the first 61 targets under the acronym QSO MUSEUM. These quasars are characterized by a median redshift z = 3.17, absolute i magnitude in the range −29.67 ≤ Mi(z = 2) ≤ −27.03, and different levels of radio-loudness. This sample unveils diverse specimens of Ly α nebulosities extending for tens of kpc around these quasars (average maximum projected distance of 80 kpc) above a surface brightness SB > 8.8 × 10−19 erg s−1 cm−2 arcsec−2(2σ). The bulk of the Ly α emission is within R < 50 kpc, and is characterized by relatively quiescent kinematics, with average velocity dispersions 〈σLy α〉 < 400 km s−1. Therefore, the motions within all these Ly α nebulosities have amplitudes consistent with gravitational motions expected in dark matter haloes hosting quasars at these redshifts, possibly reflecting the complexity in propagating a fast wind on large scales. Our current data suggest a combination of photoionization and resonant scattering as powering mechanisms of the Ly α emission. We discover the first z ∼ 3 ELAN, confirming a very low probability (⁠∼1 per cent⁠) of occurrence of such systems at these redshifts. Finally, we discuss the redshift evolution currently seen in extended Ly α emission around radio-quiet quasars from z ∼ 3 to z ∼ 2, concluding that it is possibly linked to a decrease of cool gas mass within the circumgalactic medium of quasars from z ∼ 3 to z ∼ 2, and thus to the balance of cool versus hot media. Overall, QSO MUSEUM opens the path to statistical surveys targeting the gas phases in quasars’ haloes along cosmic times.

[1]  The Lyman-α glow of gas falling into the dark matter halo of a z = 3 galaxy , 2004, Nature.

[2]  L. Cowie,et al.  Lyman- alpha Companions to High-z Quasars , 1991 .

[3]  E. Fedrigo,et al.  GALACSI – The ground layer adaptive optics system for MUSE , 2006 .

[4]  C. Steidel,et al.  THE HALO MASSES AND GALAXY ENVIRONMENTS OF HYPERLUMINOUS QSOs AT z ≃ 2.7 IN THE KECK BARYONIC STRUCTURE SURVEY , 2012, 1204.3636.

[5]  T. Heckman,et al.  Spectroscopy of spatially extended material around high-redshift radio-loud quasars , 1991 .

[6]  J. University,et al.  Are we seeing accretion flows in a 250kpc-sized Ly-alpha halo at z=3? , 2017, 1705.07125.

[7]  A. Myers,et al.  The clustering of intermediate-redshift quasars as measured by the Baryon Oscillation Spectroscopic Survey , 2012, 1203.5306.

[8]  J. Brinchmann,et al.  The MUSE Hubble Ultra Deep Field Survey - VIII. Extended Lyman-α haloes around high-z star-forming galaxies , 2017, 1710.10271.

[9]  Garching,et al.  Inspiraling Halo Accretion Mapped in Lyman-$\alpha$ Emission around a $z\sim3$ Quasar , 2017, 1709.08228.

[10]  Cambridge,et al.  Extended inverse-Compton emission from distant, powerful radio galaxies , 2006, astro-ph/0606238.

[11]  N. N. Esvadba,et al.  Resolving the Optical Emission Lines of Lyα Blob 'b1' at Z = 2.38: Another Hidden Quasar , 2013 .

[12]  A. Myers,et al.  The 2dF-SDSS LRG and QSO survey: QSO clustering and the L-z degeneracy , 2006, astro-ph/0612401.

[13]  A. Cimatti,et al.  The MUSE 3D view of feedback in a high-metallicity radio galaxy at z = 2.9 , 2017, 1711.10601.

[14]  M. F. Astronomie,et al.  The properties of the extended warm ionised gas around low-redshift QSOs and the lack of extended high-velocity outflows , 2012, 1210.0566.

[15]  J. Schaye,et al.  The drop in the cosmic star formation rate below redshift 2 is caused by a change in the mode of gas accretion and by active galactic nucleus feedback: The drop in the cosmic SFR below z = 2 , 2011 .

[16]  A. Meiksin,et al.  The physics of the intergalactic medium , 2007, 0711.3358.

[17]  G. Cresci,et al.  SINFONI spectra of heavily obscured AGNs in COSMOS: evidence of outflows in a MIR/O target at z$$\backslash$sim2.5$ , 2015, 1508.07884.

[18]  C. Gaskell Redshift difference between high and low ionization emission-line regions in QSOS-evidence for radial motions , 1982 .

[19]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[20]  Paolo Conconi,et al.  Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series , 2012 .

[21]  Andrew King,et al.  Powerful Outflows and Feedback from Active Galactic Nuclei , 2015, 1503.05206.

[22]  C. I. O. Technology.,et al.  Metal-line absorption around z ≈ 2.4 star-forming galaxies in the Keck Baryonic Structure Survey , 2014, 1403.0942.

[23]  J. Brinchmann,et al.  Dark Galaxy Candidates at Redshift ∼3.5 Detected with MUSE , 2017, 1709.03522.

[24]  J. Xavier Prochaska,et al.  A cosmic web filament revealed in Lyman-α emission around a luminous high-redshift quasar , 2014, Nature.

[25]  D. Tytler,et al.  Systematic QSO Emission-Line Velocity Shifts and New Unbiased Redshifts , 1992 .

[26]  The warm-hot intergalactic medium at z 2:2: Metal enrichment and ionization source ? , 2002, astro-ph/0211052.

[27]  J. Prochaska,et al.  Quasars Probing Quasars. IX. The Kinematics of the Circumgalactic Medium Surrounding z ∼ 2 Quasars , 2017, 1705.03476.

[28]  P. Moller,et al.  Extended Lyα emission from a damped Ly α absorber at z=1.93, and the relation between damped Ly α absorbers and Lyman-break galaxies , 1998, astro-ph/9812434.

[29]  D. Monet USNO-A2.0 , 1998 .

[30]  Juna A. Kollmeier,et al.  The intergalactic medium over the last 10 billion years – I. Lyα absorption and physical conditions , 2010, 1005.2421.

[31]  John E. Davis,et al.  Sloan Digital Sky Survey: Early Data Release , 2002 .

[32]  Robert J. Brunner,et al.  Quasars Probing Quasars. I. Optically Thick Absorbers near Luminous Quasars , 2006, astro-ph/0603742.

[33]  R. McMahon,et al.  Molecular Gas in Three z ∼ 7 Quasar Host Galaxies , 2017, 1707.05238.

[34]  B. Garilli,et al.  The VIMOS VLT Deep Survey: star formation rate density of Lyα emitters from a sample of 217 galaxies with spectroscopic redshifts 2 ≤ z ≤ 6.6 , 2010, 1003.3480.

[35]  C. Breuck,et al.  Distant radio galaxies and their environments , 2008, 0802.2770.

[36]  Garching,et al.  THE STACKED LYα EMISSION PROFILE FROM THE CIRCUM-GALACTIC MEDIUM OF z ∼ 2 QUASARS , 2016, 1604.02942.

[37]  S. Lilly,et al.  Detection of dark galaxies and circum-galactic filaments fluorescently illuminated by a quasar at z = 2.4★ , 2012, 1204.5753.

[38]  M. McQuinn The Evolution of the Intergalactic Medium , 2015, 1512.00086.

[39]  J. Munn,et al.  The USNO-B Catalog , 2002, astro-ph/0210694.

[40]  R. Teyssier,et al.  Cold streams in early massive hot haloes as the main mode of galaxy formation , 2008, Nature.

[41]  Astronomy & Astrophysics manuscript no. (will be inserted by hand later) Detection of a redshift 3.04 filament ⋆ , 2001 .

[42]  L. Ho,et al.  FEEDBACK IN LUMINOUS OBSCURED QUASARS , 2011, 1102.2913.

[43]  B. Garilli,et al.  LYα FOREST TOMOGRAPHY FROM BACKGROUND GALAXIES: THE FIRST MEGAPARSEC-RESOLUTION LARGE-SCALE STRUCTURE MAP AT z > 2 , 2014, 1409.5632.

[44]  Reality and myths of AGN feedback , 2018, 1802.10304.

[45]  J. Prochaska,et al.  QUASARS PROBING QUASARS. VII. THE PINNACLE OF THE COOL CIRCUMGALACTIC MEDIUM SURROUNDS MASSIVE z ∼ 2 GALAXIES , 2014, 1409.6344.

[46]  Celine Peroux,et al.  A Population of Faint Extended Line Emitters and the Host Galaxies of Optically Thick QSO Absorption Systems , 2007, 0711.1354.

[47]  A. Dekel,et al.  Instability of supersonic cold streams feeding galaxies – I. Linear Kelvin–Helmholtz instability with body modes , 2016, 1606.06289.

[48]  J. Prochaska,et al.  QUASARS PROBING QUASARS. IV. JOINT CONSTRAINTS ON THE CIRCUMGALACTIC MEDIUM FROM ABSORPTION AND EMISSION , 2013, 1303.2708.

[49]  G. Brammer,et al.  OVERTURNING THE CASE FOR GRAVITATIONAL POWERING IN THE PROTOTYPICAL COOLING LYα NEBULA , 2015, 1501.05312.

[50]  Maarten Schmidt,et al.  VLA observations of objects in the Palomar Bright Quasar Survey , 1989 .

[51]  J. Prochaska,et al.  THE CIRCUMGALACTIC MEDIUM OF MASSIVE GALAXIES AT z ∼ 3: A TEST FOR STELLAR FEEDBACK, GALACTIC OUTFLOWS, AND COLD STREAMS , 2012, 1205.0270.

[52]  P. Véron,et al.  A catalogue of quasars and active nuclei: 13th edition , 2010 .

[53]  D. Ceverino,et al.  Inflow velocities of cold flows streaming into massive galaxies at high redshifts , 2015, 1501.06913.

[54]  J. Schaye,et al.  The drop in the cosmic star formation rate below redshift 2 is caused by a change in the mode of gas accretion and by AGN feedback , 2011, 1102.3912.

[55]  et al,et al.  Optical and Radio Properties of Extragalactic Sources Observed by the FIRST Survey and the Sloan Digital Sky Survey , 2002, astro-ph/0202408.

[56]  B. M. Peterson,et al.  Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. II. A Homogeneous Analysis of a Large Reverberation-Mapping Database , 2004, astro-ph/0407299.

[57]  P. Hewett,et al.  Improved redshifts for SDSS quasar spectra , 2010, 1003.3017.

[58]  C. Breuck,et al.  Giant Lyα nebulae around z > 2 radio galaxies: evidence for infall , 2006, astro-ph/0611778.

[59]  A. Myers,et al.  The Sloan Digital Sky Survey Quasar Catalog: Twelfth data release , 2016, 1608.06483.

[60]  J. Sommer-Larsen,et al.  Lyα RADIATIVE TRANSFER IN COSMOLOGICAL SIMULATIONS USING ADAPTIVE MESH REFINEMENT , 2008 .

[61]  A. Szalay,et al.  The Sloan Digital Sky Survey Quasar Survey: Quasar Luminosity Function from Data Release 3 , 2006, astro-ph/0601434.

[62]  J. Prochaska,et al.  QUASARS PROBING QUASARS. III. NEW CLUES TO FEEDBACK, QUENCHING, AND THE PHYSICS OF MASSIVE GALAXY FORMATION , 2008, 0806.0862.

[63]  T. Shanks,et al.  Discovery of a dual AGN at z~3.3 with 20kpc separation , 2018, 1801.05442.

[64]  The structure and dynamical evolution of dark matter haloes , 1996, astro-ph/9603132.

[65]  J. Prochaska,et al.  DEEP HE ii AND C iv SPECTROSCOPY OF A GIANT LYα NEBULA: DENSE COMPACT GAS CLUMPS IN THE CIRCUMGALACTIC MEDIUM OF A z ∼ 2 QUASAR , 2015, 1504.03688.

[66]  R. Bouwens,et al.  A large population of ‘Lyman-break’ galaxies in a protocluster at redshift z ≈ 4.1 , 2004, Nature.

[67]  L. Cowie,et al.  The distribution of gas and galaxies around the distant quasar PKS 1614 + 051 , 1987 .

[68]  Extended Lyman-$\alpha$ emission around bright quasars , 2006, astro-ph/0603835.

[69]  S. Veilleux,et al.  Quasar-mode Feedback in Nearby Type 1 Quasars: Ubiquitous Kiloparsec-scale Outflows and Correlations with Black Hole Properties , 2017, 1708.05139.

[70]  Giant low surface brightness haloes in distant radio galaxies: USS0828+193 , 2002, astro-ph/0206118.

[71]  J. X. Prochaska,et al.  The Large, Oxygen-Rich Halos of Star-Forming Galaxies Are a Major Reservoir of Galactic Metals , 2011, Science.

[72]  Z. Cai,et al.  Discovery of an Enormous Lyα Nebula in a Massive Galaxy Overdensity at z = 2.3 , 2016, 1609.04021.

[73]  C. Baugh,et al.  The most luminous quasars do not live in the most massive dark matter haloes at any redshift , 2013, 1305.2199.

[74]  J. Prochaska,et al.  Quasar quartet embedded in giant nebula reveals rare massive structure in distant universe , 2015, Science.

[75]  M. Bremer,et al.  Dissecting the complex environment of a distant quasar with MUSE , 2015, 1507.07919.

[76]  Max Pettini,et al.  THE COLUMN DENSITY DISTRIBUTION AND CONTINUUM OPACITY OF THE INTERGALACTIC AND CIRCUMGALACTIC MEDIUM AT REDSHIFT 〈z〉 = 2.4 , 2013, 1304.6719.

[77]  Bradley M. Peterson,et al.  THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: VELOCITY SHIFTS OF QUASAR EMISSION LINES , 2016, 1602.03894.

[78]  A. Myers,et al.  THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY: THE QUASAR LUMINOSITY FUNCTION FROM DATA RELEASE NINE , 2012, 1210.6389.

[79]  L. Kewley,et al.  The MAPPINGS III Library of Fast Radiative Shock Models , 2008, 0805.0204.

[80]  J. Graham,et al.  Seeking the Ultraviolet Ionizing Background at z ≈ 3 with the Keck Telescope , 1998, astro-ph/9808111.

[81]  H. Rix,et al.  A Statistical Study of Rest-Frame Optical Emission Properties in Luminous Quasars at 2.0⩽z⩽2.5* , 1998, astro-ph/9810287.

[82]  C. Hogan,et al.  Spectroscopic limits on high-redshift Ly-alpha emission , 1990 .

[83]  Alexander S. Szalay,et al.  Sloan digital sky survey: Early data release , 2002 .

[84]  The Nature of Lyα Blobs: Supernova-dominated Primordial Galaxies , 2004, astro-ph/0408410.

[85]  O. Paris,et al.  Large-scale outflows in luminous QSOs revisited: The impact of beam smearing on AGN feedback efficiencies , 2015, 1512.05595.

[86]  Institute for Advanced Study,et al.  QUASARS PROBING QUASARS. VI. EXCESS H i ABSORPTION WITHIN ONE PROPER Mpc OF z ∼ 2 QUASARS , 2013, 1308.6222.

[87]  S. Oh,et al.  The Impact of Magnetic Fields on Thermal Instability , 2017, 1710.00822.

[88]  L[CLC]y[/CLC]α Cooling Radiation from High-Redshift Halos , 2000, astro-ph/0003366.

[89]  A. Loeb,et al.  The polarization of scattered Lyα radiation around high-redshift galaxies , 2007, 0711.2312.

[90]  V. Springel,et al.  A unified model for AGN feedback in cosmological simulations of structure formation , 2007, 0705.2238.

[91]  W. V. Breugel,et al.  Spatially resolved optical images of high-redshift quasi-stellar objects , 1991 .

[92]  J. Brinkmann,et al.  Binary Quasars in the Sloan Digital Sky Survey: Evidence for Excess Clustering on Small Scales , 2005, astro-ph/0504535.

[93]  C. Ledoux,et al.  A Lyα blob and zabs ≈ zem damped Lyα absorber in the dark matter halo of the binary quasar Q 0151+048 , 2011, 1106.3183.

[94]  A. Dutton,et al.  Cold dark matter haloes in the Planck era: evolution of structural parameters for Einasto and NFW profiles , 2014, 1402.7073.

[95]  Protoclusters associated with z > 2 radio galaxies - I. Characteristics of high redshift protoclusters , 2006, astro-ph/0610567.

[96]  B. Oppenheimer,et al.  COSMOLOGICAL ZOOM SIMULATIONS OF z = 2 GALAXIES: THE IMPACT OF GALACTIC OUTFLOWS , 2013, 1303.6959.

[97]  Hilo,et al.  THE ELEVENTH AND TWELFTH DATA RELEASES OF THE SLOAN DIGITAL SKY SURVEY: FINAL DATA FROM SDSS-III , 2015, 1501.00963.

[98]  Kinematically quiet haloes around z ∼ 2.5 radio galaxies. Keck spectroscopy , 2003, astro-ph/0309012.

[99]  J. Schaye,et al.  Cosmological simulations of the growth of supermassive black holes and feedback from active galactic nuclei: method and tests , 2009, 0904.2572.

[100]  G. Richards,et al.  UNIFICATION OF LUMINOUS TYPE 1 QUASARS THROUGH C iv EMISSION , 2010, 1011.2282.

[101]  Ryan M. O'Leary,et al.  A characteristic scale for cold gas , 2016, 1610.01164.

[102]  M. F. Astronomie,et al.  A SUBSTANTIAL MASS OF COOL, METAL-ENRICHED GAS SURROUNDING THE PROGENITORS OF MODERN-DAY ELLIPTICALS , 2012, 1211.6131.

[103]  A. Treves,et al.  The extent of the Mg ii absorbing circumgalactic medium of quasars , 2014, 1403.5559.

[104]  M. SubbaRao,et al.  Broad Emission-Line Shifts in Quasars: An Orientation Measure for Radio-Quiet Quasars? , 2002, astro-ph/0204162.

[105]  C. Breuck,et al.  The SINFONI survey of powerful radio galaxies at z~2: Jet-driven AGN feedback during the Quasar Era , 2016, 1610.02057.

[106]  Ran Wang,et al.  Keck/Palomar Cosmic Web Imagers Reveal an Enormous Lyα Nebula in an Extremely Overdense Quasi-stellar Object Pair Field at z = 2.45 , 2018, The Astrophysical Journal.

[107]  M. Dijkstra,et al.  LYMAN-ALPHA SPECTRA FROM MULTIPHASE OUTFLOWS, AND THEIR CONNECTION TO SHELL MODELS , 2016, 1604.06805.

[108]  Scott Burles,et al.  Toward a Precise Measurement of Matter Clustering: Lyα Forest Data at Redshifts 2-4 , 2000 .

[109]  A. Dekel,et al.  Galaxy bimodality due to cold flows and shock heating , 2004, astro-ph/0412300.

[110]  M. Dijkstra,et al.  Resonant line transfer in a fog: Using Lyman-alpha to probe tiny structures in atomic gas , 2017, 1704.06278.

[111]  N. Zakamska,et al.  Similarity of ionized gas nebulae around unobscured and obscured quasars , 2014, 1401.0536.

[112]  A. Loeb,et al.  Lyα blobs as an observational signature of cold accretion streams into galaxies , 2009, 0902.2999.

[113]  The extended lyman-α emission surrounding the z=3.04 radio-quiet QSO1205-30 : Primordial infalling gas illuminated by the quasar? , 2005, astro-ph/0503241.

[114]  J. Blaizot,et al.  Extended Lyman-alpha emission from cold accretion streams , 2011, 1112.4408.

[115]  R. Pelló,et al.  MUSE deep-fields: the Ly α luminosity function in the Hubble Deep Field-South at 2.91 < z < 6.64 , 2016, 1609.02920.

[116]  Extended Lyα Emission around Young Quasars: A Constraint on Galaxy Formation , 2001, astro-ph/0101174.

[117]  V. Springel,et al.  Zooming in on accretion – I. The structure of halo gas , 2015, 1503.02665.

[118]  Israel,et al.  Spectroscopy of extended Lyα envelopes around z = 4.5 quasars , 2012, 1205.3895.

[119]  N. Zakamska,et al.  EXTENDED X-RAY EMISSION FROM A QUASAR-DRIVEN SUPERBUBBLE , 2014, 1404.4875.

[120]  R. Neri,et al.  Very extended cold gas, star formation and outflows in the halo of a bright QSO at z>6 , 2014, 1409.4418.

[121]  J. Hennawi,et al.  Revealing the Warm and Hot Halo Baryons via Thomson Scattering of Quasar Light , 2018, The Astronomical Journal.

[122]  Yu Feng,et al.  COLD FLOWS AND THE FIRST QUASARS , 2011, 1107.1253.

[123]  G. Zamorani,et al.  X-shooter reveals powerful outflows in z ∼ 1.5 X-ray selected obscured quasi-stellar objects , 2014, 1409.1615.

[124]  E. Emsellem,et al.  Extended Lyman α haloes around individual high-redshift galaxies revealed by MUSE , 2015, 1509.05143.

[125]  T. D. Matteo,et al.  High-redshift supermassive black holes: accretion through cold flows , 2013, 1312.1391.

[126]  J. Trump,et al.  The mean star-forming properties of QSO host galaxies , 2013, 1310.1922.

[127]  D. Neufeld The transfer of resonance-line radiation in static astrophysical media , 1990 .

[128]  Kyle R. Stewart,et al.  High Angular Momentum Halo Gas: A Feedback and Code-independent Prediction of LCDM , 2016, 1606.08542.

[129]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[130]  M. Lehnert,et al.  RESOLVING THE OPTICAL EMISSION LINES OF Lyα BLOB “B1” AT z = 2.38: ANOTHER HIDDEN QUASAR , 2013, 1305.2926.

[131]  J. Wadsley,et al.  THE ROLE OF COLD FLOWS IN THE ASSEMBLY OF GALAXY DISKS , 2008, 0812.0007.

[132]  J. Silk,et al.  COMPARING SIMULATIONS OF AGN FEEDBACK , 2016, 1605.03589.

[133]  Simon J. Lilly,et al.  UBIQUITOUS GIANT Lyα NEBULAE AROUND THE BRIGHTEST QUASARS AT z ∼ 3.5 REVEALED WITH MUSE , 2016, 1605.01422.

[134]  Quasars Probing Quasars. II. The Anisotropic Clustering of Optically Thick Absorbers around Quasars , 2006, astro-ph/0606084.

[135]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[136]  D. Weinberg,et al.  Imaging the Forest of Lyman Limit Systems , 1996 .

[137]  Constraining quasar host halo masses with the strength of nearby Lyα forest absorption , 2006, astro-ph/0701012.

[138]  A. Treves,et al.  On the cool gaseous haloes of quasars , 2012, 1211.3433.

[139]  Mauricio Solar,et al.  Astronomical data analysis software and systems , 2018, Astron. Comput..

[140]  J. B. Oke Absolute spectral energy distributions for white dwarfs , 1974 .

[141]  J. Silk,et al.  Blowing cold flows away: the impact of early AGN activity on the formation of a brightest cluster galaxy progenitor , 2012, 1206.5838.

[142]  J. Prochaska,et al.  MUSE searches for galaxies near very metal-poor gas clouds at z ∼ 3: new constraints for cold accretion models , 2016, 1607.03893.

[143]  G. Stinson,et al.  The role of cold flows and reservoirs in galaxy formation with strong feedback , 2014, 1407.5639.

[144]  E. Greisen,et al.  The NRAO VLA Sky Survey , 1996 .

[145]  Harland W. Epps,et al.  THE KECK LOW-RESOLUTION IMAGING SPECTROMETER , 1995 .