QSO MUSEUM I: a sample of 61 extended Ly α-emission nebulae surroundingz∼ 3 quasars
暂无分享,去创建一个
Elisabeta Lusso | Jose Oñorbe | J. Prochaska | E. Farina | J. Hennawi | S. Cantalupo | J. Oñorbe | Sebastiano Cantalupo | F. A. Battaia | E. Lusso | F. Arrigoni Battaia | Fabrizio Arrigoni Battaia | Joseph F Hennawi | J Xavier Prochaska | Emanuele P Farina
[1] The Lyman-α glow of gas falling into the dark matter halo of a z = 3 galaxy , 2004, Nature.
[2] L. Cowie,et al. Lyman- alpha Companions to High-z Quasars , 1991 .
[3] E. Fedrigo,et al. GALACSI – The ground layer adaptive optics system for MUSE , 2006 .
[4] C. Steidel,et al. THE HALO MASSES AND GALAXY ENVIRONMENTS OF HYPERLUMINOUS QSOs AT z ≃ 2.7 IN THE KECK BARYONIC STRUCTURE SURVEY , 2012, 1204.3636.
[5] T. Heckman,et al. Spectroscopy of spatially extended material around high-redshift radio-loud quasars , 1991 .
[6] J. University,et al. Are we seeing accretion flows in a 250kpc-sized Ly-alpha halo at z=3? , 2017, 1705.07125.
[7] A. Myers,et al. The clustering of intermediate-redshift quasars as measured by the Baryon Oscillation Spectroscopic Survey , 2012, 1203.5306.
[8] J. Brinchmann,et al. The MUSE Hubble Ultra Deep Field Survey - VIII. Extended Lyman-α haloes around high-z star-forming galaxies , 2017, 1710.10271.
[9] Garching,et al. Inspiraling Halo Accretion Mapped in Lyman-$\alpha$ Emission around a $z\sim3$ Quasar , 2017, 1709.08228.
[10] Cambridge,et al. Extended inverse-Compton emission from distant, powerful radio galaxies , 2006, astro-ph/0606238.
[11] N. N. Esvadba,et al. Resolving the Optical Emission Lines of Lyα Blob 'b1' at Z = 2.38: Another Hidden Quasar , 2013 .
[12] A. Myers,et al. The 2dF-SDSS LRG and QSO survey: QSO clustering and the L-z degeneracy , 2006, astro-ph/0612401.
[13] A. Cimatti,et al. The MUSE 3D view of feedback in a high-metallicity radio galaxy at z = 2.9 , 2017, 1711.10601.
[14] M. F. Astronomie,et al. The properties of the extended warm ionised gas around low-redshift QSOs and the lack of extended high-velocity outflows , 2012, 1210.0566.
[15] J. Schaye,et al. The drop in the cosmic star formation rate below redshift 2 is caused by a change in the mode of gas accretion and by active galactic nucleus feedback: The drop in the cosmic SFR below z = 2 , 2011 .
[16] A. Meiksin,et al. The physics of the intergalactic medium , 2007, 0711.3358.
[17] G. Cresci,et al. SINFONI spectra of heavily obscured AGNs in COSMOS: evidence of outflows in a MIR/O target at z$$\backslash$sim2.5$ , 2015, 1508.07884.
[18] C. Gaskell. Redshift difference between high and low ionization emission-line regions in QSOS-evidence for radial motions , 1982 .
[19] D. Schlegel,et al. Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .
[20] Paolo Conconi,et al. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series , 2012 .
[21] Andrew King,et al. Powerful Outflows and Feedback from Active Galactic Nuclei , 2015, 1503.05206.
[22] C. I. O. Technology.,et al. Metal-line absorption around z ≈ 2.4 star-forming galaxies in the Keck Baryonic Structure Survey , 2014, 1403.0942.
[23] J. Brinchmann,et al. Dark Galaxy Candidates at Redshift ∼3.5 Detected with MUSE , 2017, 1709.03522.
[24] J. Xavier Prochaska,et al. A cosmic web filament revealed in Lyman-α emission around a luminous high-redshift quasar , 2014, Nature.
[25] D. Tytler,et al. Systematic QSO Emission-Line Velocity Shifts and New Unbiased Redshifts , 1992 .
[26] The warm-hot intergalactic medium at z 2:2: Metal enrichment and ionization source ? , 2002, astro-ph/0211052.
[27] J. Prochaska,et al. Quasars Probing Quasars. IX. The Kinematics of the Circumgalactic Medium Surrounding z ∼ 2 Quasars , 2017, 1705.03476.
[28] P. Moller,et al. Extended Lyα emission from a damped Ly α absorber at z=1.93, and the relation between damped Ly α absorbers and Lyman-break galaxies , 1998, astro-ph/9812434.
[29] D. Monet. USNO-A2.0 , 1998 .
[30] Juna A. Kollmeier,et al. The intergalactic medium over the last 10 billion years – I. Lyα absorption and physical conditions , 2010, 1005.2421.
[31] John E. Davis,et al. Sloan Digital Sky Survey: Early Data Release , 2002 .
[32] Robert J. Brunner,et al. Quasars Probing Quasars. I. Optically Thick Absorbers near Luminous Quasars , 2006, astro-ph/0603742.
[33] R. McMahon,et al. Molecular Gas in Three z ∼ 7 Quasar Host Galaxies , 2017, 1707.05238.
[34] B. Garilli,et al. The VIMOS VLT Deep Survey: star formation rate density of Lyα emitters from a sample of 217 galaxies with spectroscopic redshifts 2 ≤ z ≤ 6.6 , 2010, 1003.3480.
[35] C. Breuck,et al. Distant radio galaxies and their environments , 2008, 0802.2770.
[36] Garching,et al. THE STACKED LYα EMISSION PROFILE FROM THE CIRCUM-GALACTIC MEDIUM OF z ∼ 2 QUASARS , 2016, 1604.02942.
[37] S. Lilly,et al. Detection of dark galaxies and circum-galactic filaments fluorescently illuminated by a quasar at z = 2.4★ , 2012, 1204.5753.
[38] M. McQuinn. The Evolution of the Intergalactic Medium , 2015, 1512.00086.
[39] J. Munn,et al. The USNO-B Catalog , 2002, astro-ph/0210694.
[40] R. Teyssier,et al. Cold streams in early massive hot haloes as the main mode of galaxy formation , 2008, Nature.
[41] Astronomy & Astrophysics manuscript no. (will be inserted by hand later) Detection of a redshift 3.04 filament ⋆ , 2001 .
[42] L. Ho,et al. FEEDBACK IN LUMINOUS OBSCURED QUASARS , 2011, 1102.2913.
[43] B. Garilli,et al. LYα FOREST TOMOGRAPHY FROM BACKGROUND GALAXIES: THE FIRST MEGAPARSEC-RESOLUTION LARGE-SCALE STRUCTURE MAP AT z > 2 , 2014, 1409.5632.
[44] Reality and myths of AGN feedback , 2018, 1802.10304.
[45] J. Prochaska,et al. QUASARS PROBING QUASARS. VII. THE PINNACLE OF THE COOL CIRCUMGALACTIC MEDIUM SURROUNDS MASSIVE z ∼ 2 GALAXIES , 2014, 1409.6344.
[46] Celine Peroux,et al. A Population of Faint Extended Line Emitters and the Host Galaxies of Optically Thick QSO Absorption Systems , 2007, 0711.1354.
[47] A. Dekel,et al. Instability of supersonic cold streams feeding galaxies – I. Linear Kelvin–Helmholtz instability with body modes , 2016, 1606.06289.
[48] J. Prochaska,et al. QUASARS PROBING QUASARS. IV. JOINT CONSTRAINTS ON THE CIRCUMGALACTIC MEDIUM FROM ABSORPTION AND EMISSION , 2013, 1303.2708.
[49] G. Brammer,et al. OVERTURNING THE CASE FOR GRAVITATIONAL POWERING IN THE PROTOTYPICAL COOLING LYα NEBULA , 2015, 1501.05312.
[50] Maarten Schmidt,et al. VLA observations of objects in the Palomar Bright Quasar Survey , 1989 .
[51] J. Prochaska,et al. THE CIRCUMGALACTIC MEDIUM OF MASSIVE GALAXIES AT z ∼ 3: A TEST FOR STELLAR FEEDBACK, GALACTIC OUTFLOWS, AND COLD STREAMS , 2012, 1205.0270.
[52] P. Véron,et al. A catalogue of quasars and active nuclei: 13th edition , 2010 .
[53] D. Ceverino,et al. Inflow velocities of cold flows streaming into massive galaxies at high redshifts , 2015, 1501.06913.
[54] J. Schaye,et al. The drop in the cosmic star formation rate below redshift 2 is caused by a change in the mode of gas accretion and by AGN feedback , 2011, 1102.3912.
[55] et al,et al. Optical and Radio Properties of Extragalactic Sources Observed by the FIRST Survey and the Sloan Digital Sky Survey , 2002, astro-ph/0202408.
[56] B. M. Peterson,et al. Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. II. A Homogeneous Analysis of a Large Reverberation-Mapping Database , 2004, astro-ph/0407299.
[57] P. Hewett,et al. Improved redshifts for SDSS quasar spectra , 2010, 1003.3017.
[58] C. Breuck,et al. Giant Lyα nebulae around z > 2 radio galaxies: evidence for infall , 2006, astro-ph/0611778.
[59] A. Myers,et al. The Sloan Digital Sky Survey Quasar Catalog: Twelfth data release , 2016, 1608.06483.
[60] J. Sommer-Larsen,et al. Lyα RADIATIVE TRANSFER IN COSMOLOGICAL SIMULATIONS USING ADAPTIVE MESH REFINEMENT , 2008 .
[61] A. Szalay,et al. The Sloan Digital Sky Survey Quasar Survey: Quasar Luminosity Function from Data Release 3 , 2006, astro-ph/0601434.
[62] J. Prochaska,et al. QUASARS PROBING QUASARS. III. NEW CLUES TO FEEDBACK, QUENCHING, AND THE PHYSICS OF MASSIVE GALAXY FORMATION , 2008, 0806.0862.
[63] T. Shanks,et al. Discovery of a dual AGN at z~3.3 with 20kpc separation , 2018, 1801.05442.
[64] The structure and dynamical evolution of dark matter haloes , 1996, astro-ph/9603132.
[65] J. Prochaska,et al. DEEP HE ii AND C iv SPECTROSCOPY OF A GIANT LYα NEBULA: DENSE COMPACT GAS CLUMPS IN THE CIRCUMGALACTIC MEDIUM OF A z ∼ 2 QUASAR , 2015, 1504.03688.
[66] R. Bouwens,et al. A large population of ‘Lyman-break’ galaxies in a protocluster at redshift z ≈ 4.1 , 2004, Nature.
[67] L. Cowie,et al. The distribution of gas and galaxies around the distant quasar PKS 1614 + 051 , 1987 .
[68] Extended Lyman-$\alpha$ emission around bright quasars , 2006, astro-ph/0603835.
[69] S. Veilleux,et al. Quasar-mode Feedback in Nearby Type 1 Quasars: Ubiquitous Kiloparsec-scale Outflows and Correlations with Black Hole Properties , 2017, 1708.05139.
[70] Giant low surface brightness haloes in distant radio galaxies: USS0828+193 , 2002, astro-ph/0206118.
[71] J. X. Prochaska,et al. The Large, Oxygen-Rich Halos of Star-Forming Galaxies Are a Major Reservoir of Galactic Metals , 2011, Science.
[72] Z. Cai,et al. Discovery of an Enormous Lyα Nebula in a Massive Galaxy Overdensity at z = 2.3 , 2016, 1609.04021.
[73] C. Baugh,et al. The most luminous quasars do not live in the most massive dark matter haloes at any redshift , 2013, 1305.2199.
[74] J. Prochaska,et al. Quasar quartet embedded in giant nebula reveals rare massive structure in distant universe , 2015, Science.
[75] M. Bremer,et al. Dissecting the complex environment of a distant quasar with MUSE , 2015, 1507.07919.
[76] Max Pettini,et al. THE COLUMN DENSITY DISTRIBUTION AND CONTINUUM OPACITY OF THE INTERGALACTIC AND CIRCUMGALACTIC MEDIUM AT REDSHIFT 〈z〉 = 2.4 , 2013, 1304.6719.
[77] Bradley M. Peterson,et al. THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: VELOCITY SHIFTS OF QUASAR EMISSION LINES , 2016, 1602.03894.
[78] A. Myers,et al. THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY: THE QUASAR LUMINOSITY FUNCTION FROM DATA RELEASE NINE , 2012, 1210.6389.
[79] L. Kewley,et al. The MAPPINGS III Library of Fast Radiative Shock Models , 2008, 0805.0204.
[80] J. Graham,et al. Seeking the Ultraviolet Ionizing Background at z ≈ 3 with the Keck Telescope , 1998, astro-ph/9808111.
[81] H. Rix,et al. A Statistical Study of Rest-Frame Optical Emission Properties in Luminous Quasars at 2.0⩽z⩽2.5* , 1998, astro-ph/9810287.
[82] C. Hogan,et al. Spectroscopic limits on high-redshift Ly-alpha emission , 1990 .
[83] Alexander S. Szalay,et al. Sloan digital sky survey: Early data release , 2002 .
[84] The Nature of Lyα Blobs: Supernova-dominated Primordial Galaxies , 2004, astro-ph/0408410.
[85] O. Paris,et al. Large-scale outflows in luminous QSOs revisited: The impact of beam smearing on AGN feedback efficiencies , 2015, 1512.05595.
[86] Institute for Advanced Study,et al. QUASARS PROBING QUASARS. VI. EXCESS H i ABSORPTION WITHIN ONE PROPER Mpc OF z ∼ 2 QUASARS , 2013, 1308.6222.
[87] S. Oh,et al. The Impact of Magnetic Fields on Thermal Instability , 2017, 1710.00822.
[88] L[CLC]y[/CLC]α Cooling Radiation from High-Redshift Halos , 2000, astro-ph/0003366.
[89] A. Loeb,et al. The polarization of scattered Lyα radiation around high-redshift galaxies , 2007, 0711.2312.
[90] V. Springel,et al. A unified model for AGN feedback in cosmological simulations of structure formation , 2007, 0705.2238.
[91] W. V. Breugel,et al. Spatially resolved optical images of high-redshift quasi-stellar objects , 1991 .
[92] J. Brinkmann,et al. Binary Quasars in the Sloan Digital Sky Survey: Evidence for Excess Clustering on Small Scales , 2005, astro-ph/0504535.
[93] C. Ledoux,et al. A Lyα blob and zabs ≈ zem damped Lyα absorber in the dark matter halo of the binary quasar Q 0151+048 , 2011, 1106.3183.
[94] A. Dutton,et al. Cold dark matter haloes in the Planck era: evolution of structural parameters for Einasto and NFW profiles , 2014, 1402.7073.
[95] Protoclusters associated with z > 2 radio galaxies - I. Characteristics of high redshift protoclusters , 2006, astro-ph/0610567.
[96] B. Oppenheimer,et al. COSMOLOGICAL ZOOM SIMULATIONS OF z = 2 GALAXIES: THE IMPACT OF GALACTIC OUTFLOWS , 2013, 1303.6959.
[97] Hilo,et al. THE ELEVENTH AND TWELFTH DATA RELEASES OF THE SLOAN DIGITAL SKY SURVEY: FINAL DATA FROM SDSS-III , 2015, 1501.00963.
[98] Kinematically quiet haloes around z ∼ 2.5 radio galaxies. Keck spectroscopy , 2003, astro-ph/0309012.
[99] J. Schaye,et al. Cosmological simulations of the growth of supermassive black holes and feedback from active galactic nuclei: method and tests , 2009, 0904.2572.
[100] G. Richards,et al. UNIFICATION OF LUMINOUS TYPE 1 QUASARS THROUGH C iv EMISSION , 2010, 1011.2282.
[101] Ryan M. O'Leary,et al. A characteristic scale for cold gas , 2016, 1610.01164.
[102] M. F. Astronomie,et al. A SUBSTANTIAL MASS OF COOL, METAL-ENRICHED GAS SURROUNDING THE PROGENITORS OF MODERN-DAY ELLIPTICALS , 2012, 1211.6131.
[103] A. Treves,et al. The extent of the Mg ii absorbing circumgalactic medium of quasars , 2014, 1403.5559.
[104] M. SubbaRao,et al. Broad Emission-Line Shifts in Quasars: An Orientation Measure for Radio-Quiet Quasars? , 2002, astro-ph/0204162.
[105] C. Breuck,et al. The SINFONI survey of powerful radio galaxies at z~2: Jet-driven AGN feedback during the Quasar Era , 2016, 1610.02057.
[106] Ran Wang,et al. Keck/Palomar Cosmic Web Imagers Reveal an Enormous Lyα Nebula in an Extremely Overdense Quasi-stellar Object Pair Field at z = 2.45 , 2018, The Astrophysical Journal.
[107] M. Dijkstra,et al. LYMAN-ALPHA SPECTRA FROM MULTIPHASE OUTFLOWS, AND THEIR CONNECTION TO SHELL MODELS , 2016, 1604.06805.
[108] Scott Burles,et al. Toward a Precise Measurement of Matter Clustering: Lyα Forest Data at Redshifts 2-4 , 2000 .
[109] A. Dekel,et al. Galaxy bimodality due to cold flows and shock heating , 2004, astro-ph/0412300.
[110] M. Dijkstra,et al. Resonant line transfer in a fog: Using Lyman-alpha to probe tiny structures in atomic gas , 2017, 1704.06278.
[111] N. Zakamska,et al. Similarity of ionized gas nebulae around unobscured and obscured quasars , 2014, 1401.0536.
[112] A. Loeb,et al. Lyα blobs as an observational signature of cold accretion streams into galaxies , 2009, 0902.2999.
[113] The extended lyman-α emission surrounding the z=3.04 radio-quiet QSO1205-30 : Primordial infalling gas illuminated by the quasar? , 2005, astro-ph/0503241.
[114] J. Blaizot,et al. Extended Lyman-alpha emission from cold accretion streams , 2011, 1112.4408.
[115] R. Pelló,et al. MUSE deep-fields: the Ly α luminosity function in the Hubble Deep Field-South at 2.91 < z < 6.64 , 2016, 1609.02920.
[116] Extended Lyα Emission around Young Quasars: A Constraint on Galaxy Formation , 2001, astro-ph/0101174.
[117] V. Springel,et al. Zooming in on accretion – I. The structure of halo gas , 2015, 1503.02665.
[118] Israel,et al. Spectroscopy of extended Lyα envelopes around z = 4.5 quasars , 2012, 1205.3895.
[119] N. Zakamska,et al. EXTENDED X-RAY EMISSION FROM A QUASAR-DRIVEN SUPERBUBBLE , 2014, 1404.4875.
[120] R. Neri,et al. Very extended cold gas, star formation and outflows in the halo of a bright QSO at z>6 , 2014, 1409.4418.
[121] J. Hennawi,et al. Revealing the Warm and Hot Halo Baryons via Thomson Scattering of Quasar Light , 2018, The Astronomical Journal.
[122] Yu Feng,et al. COLD FLOWS AND THE FIRST QUASARS , 2011, 1107.1253.
[123] G. Zamorani,et al. X-shooter reveals powerful outflows in z ∼ 1.5 X-ray selected obscured quasi-stellar objects , 2014, 1409.1615.
[124] E. Emsellem,et al. Extended Lyman α haloes around individual high-redshift galaxies revealed by MUSE , 2015, 1509.05143.
[125] T. D. Matteo,et al. High-redshift supermassive black holes: accretion through cold flows , 2013, 1312.1391.
[126] J. Trump,et al. The mean star-forming properties of QSO host galaxies , 2013, 1310.1922.
[127] D. Neufeld. The transfer of resonance-line radiation in static astrophysical media , 1990 .
[128] Kyle R. Stewart,et al. High Angular Momentum Halo Gas: A Feedback and Code-independent Prediction of LCDM , 2016, 1606.08542.
[129] Douglas P. Finkbeiner,et al. MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.
[130] M. Lehnert,et al. RESOLVING THE OPTICAL EMISSION LINES OF Lyα BLOB “B1” AT z = 2.38: ANOTHER HIDDEN QUASAR , 2013, 1305.2926.
[131] J. Wadsley,et al. THE ROLE OF COLD FLOWS IN THE ASSEMBLY OF GALAXY DISKS , 2008, 0812.0007.
[132] J. Silk,et al. COMPARING SIMULATIONS OF AGN FEEDBACK , 2016, 1605.03589.
[133] Simon J. Lilly,et al. UBIQUITOUS GIANT Lyα NEBULAE AROUND THE BRIGHTEST QUASARS AT z ∼ 3.5 REVEALED WITH MUSE , 2016, 1605.01422.
[134] Quasars Probing Quasars. II. The Anisotropic Clustering of Optically Thick Absorbers around Quasars , 2006, astro-ph/0606084.
[135] S. White,et al. A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.
[136] D. Weinberg,et al. Imaging the Forest of Lyman Limit Systems , 1996 .
[137] Constraining quasar host halo masses with the strength of nearby Lyα forest absorption , 2006, astro-ph/0701012.
[138] A. Treves,et al. On the cool gaseous haloes of quasars , 2012, 1211.3433.
[139] Mauricio Solar,et al. Astronomical data analysis software and systems , 2018, Astron. Comput..
[140] J. B. Oke. Absolute spectral energy distributions for white dwarfs , 1974 .
[141] J. Silk,et al. Blowing cold flows away: the impact of early AGN activity on the formation of a brightest cluster galaxy progenitor , 2012, 1206.5838.
[142] J. Prochaska,et al. MUSE searches for galaxies near very metal-poor gas clouds at z ∼ 3: new constraints for cold accretion models , 2016, 1607.03893.
[143] G. Stinson,et al. The role of cold flows and reservoirs in galaxy formation with strong feedback , 2014, 1407.5639.
[144] E. Greisen,et al. The NRAO VLA Sky Survey , 1996 .
[145] Harland W. Epps,et al. THE KECK LOW-RESOLUTION IMAGING SPECTROMETER , 1995 .