Local Linear M‐estimation in non‐parametric spatial regression

A robust version of local linear regression smoothers augmented with variable bandwidths is investigated for dependent spatial processes. The (uniform) weak consistency as well as asymptotic normality for the local linear M-estimator (LLME) of the spatial regression function g( x ) are established under some mild conditions. Furthermore, an additive model is considered to avoid the curse of dimensionality for spatial processes and an estimation procedure based on combining the marginal integration technique with LLME is applied in this paper. Meanwhile, we present a simulated study to illustrate the proposed estimation method. Our simulation results show that the estimation method works well numerically. Copyright 2009 The Authors. Journal compilation 2009 Blackwell Publishing Ltd

[1]  Jia Chen,et al.  Robust estimation in a nonlinear cointegration model , 2010, J. Multivar. Anal..

[2]  Marc Hallin,et al.  Kernel density estimation for spatial processes: the L1 theory , 2004 .

[3]  Wolfgang Härdle,et al.  Direct estimation of low-dimensional components in additive models , 1998 .

[4]  Exponential inequalities for spatial processes and uniform convergence rates for density estimation , 2003 .

[5]  Jiancheng Jiang,et al.  ROBUST LOCAL POLYNOMIAL REGRESSION FOR DEPENDENT DATA , 2001 .

[6]  G. Roussas Nonparametric regression estimation under mixing conditions , 1990 .

[7]  C. Radhakrishna Rao,et al.  M-estimation of multivariate linear regression parameters under a convex discrepancy function , 1992 .

[8]  Brian D. Ripley,et al.  Spatial Statistics: Ripley/Spatial Statistics , 2005 .

[9]  Sastry G. Pantula,et al.  A note on strong mixing of ARMA processes , 1986 .

[10]  Fan Jianqing,et al.  Variable bandwidth and one-step local M-estimator , 2000 .

[11]  H. Müller,et al.  Variable Bandwidth Kernel Estimators of Regression Curves , 1987 .

[12]  P. Whittle ON STATIONARY PROCESSES IN THE PLANE , 1954 .

[13]  R. C. Bradley Basic Properties of Strong Mixing Conditions , 1985 .

[14]  M. Hallin,et al.  Local linear spatial regression , 2004, math/0508597.

[15]  Local likelihood density estimation on random fields , 2004 .

[16]  C. Xiru,et al.  Asymptotic Normality of Minimum L1-Norm Estimates in Linear Models , 1990 .

[17]  Marc Hallin,et al.  Density estimation for spatial linear processes , 2001 .

[18]  Jiancheng Jiang,et al.  Two-stage local M-estimation of additive models , 2008 .

[19]  L. Tran Kernel density estimation on random fields , 1990 .

[20]  W. Cleveland Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .

[21]  Frederick R. Forst,et al.  On robust estimation of the location parameter , 1980 .

[22]  Zongwu Cai,et al.  Local M-estimator for nonparametric time series , 2003 .

[23]  Zudi Lu,et al.  Spatial kernel regression estimation: weak consistency. , 2004 .

[24]  Jiti Gao,et al.  Estimation in semiparametric spatial regression , 2003 .

[25]  R. Koenker,et al.  Asymptotic Theory of Least Absolute Error Regression , 1978 .

[26]  Jianqing Fan,et al.  Local polynomial modelling and its applications , 1994 .

[27]  Marc Hallin,et al.  Kernel density estimation for spatial processes: the L 1 theory , 2004 .

[28]  Enno Mammen,et al.  The Existence and Asymptotic Properties of a Backfitting Projection Algorithm Under Weak Conditions , 1999 .

[29]  M. Rosenblatt A CENTRAL LIMIT THEOREM AND A STRONG MIXING CONDITION. , 1956, Proceedings of the National Academy of Sciences of the United States of America.

[30]  R. L. Eubank,et al.  M -type smoothing splines with auxiliary scale estimation , 1991 .

[31]  L. Tran,et al.  Kernel density estimation for random fields (density estimation for random fields) , 1997 .

[32]  L. Breiman,et al.  Variable Kernel Estimates of Multivariate Densities , 1977 .

[33]  Jiti Gao,et al.  M-TYPE SMOOTHING SPLINES IN NONPARAMETRIC AND SEMIPARAMETRIC REGRESSION MODELS , 1997 .