Phylogeography of Ramalina farinacea (Lichenized Fungi, Ascomycota) in the Mediterranean Basin, Europe, and Macaronesia

Ramalina farinacea is an epiphytic lichen-forming fungus with a broad geographic distribution, especially in the Northern Hemisphere. In the eighties of the last century, it was hypothesized that R. farinacea had originated in the Macaronesian–Mediterranean region, with the Canary Islands as its probable southernmost limit, and thereafter it would have increased its distribution area. In order to explore the phylogeography of this emblematic lichen, we analyzed 120 thalli of R. farinacea collected in 38 localities distributed in temperate and boreal Europe, the Western Mediterranean Basin, and several Macaronesian archipelagos in the Atlantic Ocean. Data from two nuclear markers (nrITS and uid70) of the mycobiont were obtained to calculate genetic diversity indices to infer the phylogenies and haplotype networks and to investigate population structure. In addition, dating analysis was conducted to provide a valuable hypothesis of the timing of the origin and diversification of R. farinacea and its close allies. Our results highlight that phylogenetic species circumscription in the “Ramalina farinacea group” is complex and suggests that incomplete lineage sorting is at the base of conflicting phylogenetic signals. The existence of a high number of haplotypes restricted to the Macaronesian region, together with the diversification of R. farinacea in the Pleistocene, suggests that this species and its closest relatives originated during relatively recent geological times and then expanded its range to higher latitudes. However, our data cannot rule out whether the species originated from the Macaronesian archipelagos exclusively or also from the Mediterranean Basin. In conclusion, the present work provides a valuable biogeographical hypothesis for disentangling the evolution of this epiphytic lichen in space and time.

[1]  M. Grube,et al.  Photobiont Diversity in Lichen Symbioses From Extreme Environments , 2022, Frontiers in Microbiology.

[2]  A. Jabłońska,et al.  Phylogeny and Ecology of Trebouxia Photobionts From Bolivian Lichens , 2022, Frontiers in Microbiology.

[3]  M. Blázquez,et al.  The Role of Photobionts as Drivers of Diversification in an Island Radiation of Lichen-Forming Fungi , 2022, Frontiers in Microbiology.

[4]  C. Scheidegger,et al.  Phylogeographic reconstructions can be biased by ancestral shared alleles: The case of the polymorphic lichen Bryoria fuscescens in Europe and North Africa , 2021, Molecular ecology.

[5]  P. Clerc,et al.  Usnea dasopoga (Ach.) Nyl. and U. barbata (L.) F. H. Wigg. (Ascomycetes, Parmeliaceae) are two different species: a plea for reliable identifications in molecular studies , 2021, The Lichenologist.

[6]  P. Bork,et al.  Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation , 2021, Nucleic Acids Res..

[7]  D. Zühlke,et al.  The Lichens’ Microbiota, Still a Mystery? , 2021, Frontiers in Microbiology.

[8]  L. Muggia,et al.  Thallus Growth Stage and Geographic Origin Shape Microalgal Diversity in Ramalina farinacea Lichen Holobionts , 2021, Journal of phycology.

[9]  Á. Calatayud,et al.  Multidisciplinary approach to describe Trebouxia diversity within lichenized fungi Buellia zoharyi from the Canary Islands , 2020, Symbiosis.

[10]  T. Brandrud,et al.  Cortinarius ochrolamellatus (Agaricales, Basidiomycota): a new species in C. sect. Laeti, with comments on the origin of its European-Hyrcanian distribution , 2020 .

[11]  E. Sérusiaux,et al.  The fruticose genera in the Ramalinaceae (Ascomycota, Lecanoromycetes): their diversity and evolutionary history , 2020, MycoKeys.

[12]  Patricia Moya,et al.  Symbiotic microalgal diversity within lichenicolous lichens and crustose hosts on Iberian Peninsula gypsum biocrusts , 2020, Scientific Reports.

[13]  R. Irizarry ggplot2 , 2019, Introduction to Data Science.

[14]  J. Otte,et al.  A Glimpse into Genetic Diversity and Symbiont Interaction Patterns in Lichen Communities from Areas with Different Disturbance Histories in Białowieża Forest, Poland , 2019, Microorganisms.

[15]  E. Timdal,et al.  OLICH: A reference library of DNA barcodes for Nordic lichens , 2019, Biodiversity data journal.

[16]  I. Garrido‐Benavent,et al.  How did terricolous fungi originate in the Mediterranean region? A case study with a gypsicolous lichenized species , 2019, Journal of Biogeography.

[17]  Nerea Abrego,et al.  Do plant‐based biogeographical regions shape aphyllophoroid fungal communities in Europe? , 2018 .

[18]  M. Braun,et al.  Why Do Phylogenomic Data Sets Yield Conflicting Trees? Data Type Influences the Avian Tree of Life more than Taxon Sampling , 2017, Systematic biology.

[19]  H. Sipman,et al.  Estimating the population size of the endemic lichens Anzia centrifuga (Parmeliaceae) and Ramalina species (Ramalinaceae) on Porto Santo (Madeira archipelago) , 2017, The Bryologist.

[20]  Tandy Warnow,et al.  To include or not to include: The impact of gene filtering on species tree estimation methods , 2017, bioRxiv.

[21]  S. Río,et al.  Bioclimatology of the Iberian Peninsula and the Balearic Islands , 2017 .

[22]  R. Lücking,et al.  The 2016 classification of lichenized fungi in the Ascomycota and Basidiomycota – Approaching one thousand genera , 2016, The Bryologist.

[23]  M. Grube,et al.  High Life Expectancy of Bacteria on Lichens , 2016, Microbial Ecology.

[24]  M. Piercey-Normore,et al.  Phylogenetic relationships among reindeer lichens of North America , 2016, The Lichenologist.

[25]  L. Muggia,et al.  Resolving evolutionary relationships in lichen-forming fungi using diverse phylogenomic datasets and analytical approaches , 2016, Scientific Reports.

[26]  M. Nelsen,et al.  Evaluation of traditionally circumscribed species in the lichen-forming genus Usnea, section Usnea (Parmeliaceae, Ascomycota) using a six-locus dataset , 2016, Organisms Diversity & Evolution.

[27]  David Bryant,et al.  popart: full‐feature software for haplotype network construction , 2015 .

[28]  L. Casano,et al.  Lichen Rehydration in Heavy Metal-Polluted Environments: Pb Modulates the Oxidative Response of Both Ramalina farinacea Thalli and Its Isolated Microalgae , 2015, Microbial Ecology.

[29]  Lauri Saag,et al.  Species delimitation in the lichenized fungal genus Vulpicida (Parmeliaceae, Ascomycota) using gene concatenation and coalescent-based species tree approaches. , 2014, American journal of botany.

[30]  M. Grube,et al.  Microbial cargo: do bacteria on symbiotic propagules reinforce the microbiome of lichens? , 2014, Environmental microbiology.

[31]  H. Buckley,et al.  Phylogenetic congruence of lichenised fungi and algae is affected by spatial scale and taxonomic diversity , 2014, PeerJ.

[32]  I. Pérez-Vargas A new endemic Ramalina species from the Canary Islands (Ascomycota, Lecanorales) , 2014 .

[33]  B. Emerson,et al.  Cryptic or mystic? Glacial tree refugia in northern Europe. , 2013, Trends in ecology & evolution.

[34]  M. Grube,et al.  Genetic diversity and species delimitation of the zeorin-containing red-fruited Cladonia species (lichenized Ascomycota) assessed with ITS rDNA and β-tubulin data , 2013, The Lichenologist.

[35]  M. Grube,et al.  The genetic structure of the cosmopolitan three-partner lichen Ramalina farinacea evidences the concerted diversification of symbionts. , 2013, FEMS microbiology ecology.

[36]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[37]  H. Lumbsch,et al.  Neogene-dominated diversification in neotropical montane lichens: dating divergence events in the lichen-forming fungal genus Oropogon (Parmeliaceae). , 2012, American journal of botany.

[38]  H. Lumbsch,et al.  Miocene and Pliocene dominated diversification of the lichen-forming fungal genus Melanohalea (Parmeliaceae, Ascomycota) and Pleistocene population expansions , 2012, BMC Evolutionary Biology.

[39]  P. Vargas,et al.  Coalescent Simulations Reveal Hybridization and Incomplete Lineage Sorting in Mediterranean Linaria , 2012, PloS one.

[40]  R. Lanfear,et al.  Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. , 2012, Molecular biology and evolution.

[41]  P. Taberlet,et al.  Glacial Survival of Boreal Trees in Northern Scandinavia , 2012, Science.

[42]  Maxim Teslenko,et al.  MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space , 2012, Systematic biology.

[43]  K. Esser Fungal Associations , 2012, The Mycota.

[44]  P. Hollingsworth,et al.  DNA barcoding of lichenized fungi demonstrates high identification success in a floristic context. , 2011, The New phytologist.

[45]  G. Feliner Southern European glacial refugia: A tale of tales , 2011 .

[46]  L. Casano,et al.  Two Trebouxia algae with different physiological performances are ever-present in lichen thalli of Ramalina farinacea. Coexistence versus competition? , 2011, Environmental microbiology.

[47]  R. Whittaker,et al.  A reconstruction of Palaeo‐Macaronesia, with particular reference to the long‐term biogeography of the Atlantic island laurel forests , 2011 .

[48]  G. Hewitt Quaternary phylogeography: the roots of hybrid zones , 2011, Genetica.

[49]  D. Ertz,et al.  A two-gene phylogeny shows the lichen genus Niebla (Lecanorales) is endemic to the New World and does not occur in Macaronesia nor in the Mediterranean basin. , 2010, Fungal biology.

[50]  J. Habel,et al.  Relict species : phylogeography and conservation biology , 2010 .

[51]  Marc A Suchard,et al.  Unifying vertical and nonvertical evolution: a stochastic ARG-based framework. , 2010, Systematic biology.

[52]  Peter J. Bradbury,et al.  The Last Glacial Maximum , 2009, Science.

[53]  F. Médail,et al.  Glacial refugia influence plant diversity patterns in the Mediterranean Basin , 2009 .

[54]  Patricia A. McLenachan,et al.  A Statistical Approach for Distinguishing Hybridization and Incomplete Lineage Sorting , 2009, The American Naturalist.

[55]  Pablo Librado,et al.  DnaSP v5: a software for comprehensive analysis of DNA polymorphism data , 2009, Bioinform..

[56]  R. Rachid,et al.  Cellular Response of a Pollution Bioindicator Model (Ramalina farinacea) Following Treatment with Fertilizer (NPKs) , 2009 .

[57]  Jukka Corander,et al.  Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations , 2008, BMC Bioinformatics.

[58]  M. Kageyama,et al.  Glacial refugia of temperate trees in Europe: insights from species distribution modelling , 2008 .

[59]  J. Rougemont,et al.  A rapid bootstrap algorithm for the RAxML Web servers. , 2008, Systematic biology.

[60]  A. Aptroot Lichens of St Helena and Ascension Island , 2008 .

[61]  Vincent Moulton,et al.  Using supernetworks to distinguish hybridization from lineage-sorting , 2008, BMC Evolutionary Biology.

[62]  A. Rambaut,et al.  BEAST: Bayesian evolutionary analysis by sampling trees , 2007, BMC Evolutionary Biology.

[63]  A. Aptroot,et al.  The lichen genus Ramalina on the Galapagos , 2007, The Lichenologist.

[64]  M. Araújo,et al.  The island immaturity – speciation pulse model of island evolution: an alternative to the “diversity begets diversity” model , 2007 .

[65]  Rikke Reese Naesborg,et al.  Molecular phylogeny of the genus Lecania (Ramalinaceae, lichenized Ascomycota). , 2007, Mycological research.

[66]  N. Ferrand,et al.  Phylogeography of Southern European Refugia , 2007 .

[67]  Jukka Corander,et al.  Bayesian analysis of population structure based on linked molecular information. , 2007, Mathematical biosciences.

[68]  T. Schmitt Molecular biogeography of Europe: Pleistocene cycles and postglacial trends , 2007, Frontiers in Zoology.

[69]  D. Hawksworth,et al.  Biodiversity of lichens, including a world-wide analysis of checklist data based on Takhtajan’s floristic regions , 2007, Biodiversity and Conservation.

[70]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[71]  Alan M. Moses,et al.  Widespread Discordance of Gene Trees with Species Tree in Drosophila: Evidence for Incomplete Lineage Sorting , 2006, PLoS genetics.

[72]  F. Blattner,et al.  A chloroplast genealogy of hordeum (poaceae): Long-term persisting haplotypes, incomplete lineage sorting, regional extinction, and the consequences for phylogenetic inference. , 2006, Molecular biology and evolution.

[73]  J. Corander,et al.  Bayesian identification of admixture events using multilocus molecular markers , 2006, Molecular ecology.

[74]  F. Delsuc,et al.  Phylogenomics: the beginning of incongruence? , 2006, Trends in genetics : TIG.

[75]  J. Hur,et al.  Highland macrolichen flora of Northwestern Yunnan, China. , 2005, Journal of microbiology.

[76]  M. Grube,et al.  Secondary Chemistry of Lichen-forming Fungi: Chemosyndromic Variation and DNA-analyses of Cultures and Chemotypes in the Ramalina farinacea Complex , 2004 .

[77]  Mariana Morando,et al.  PHYLOGENY AND PHYLOGEOGRAPHY OF THE LIOLAEMUS DARWINII COMPLEX (SQUAMATA: LIOLAEMIDAE): EVIDENCE FOR INTROGRESSION AND INCOMPLETE LINEAGE SORTING , 2004, Evolution; international journal of organic evolution.

[78]  R. Petit,et al.  Glacial Refugia: Hotspots But Not Melting Pots of Genetic Diversity , 2003, Science.

[79]  K. Katoh,et al.  MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. , 2002, Nucleic acids research.

[80]  S. Zoller,et al.  Species‐specific detection of Lobaria pulmonaria (lichenized ascomycete) diaspores in litter samples trapped in snow cover , 2001, Molecular ecology.

[81]  L. Sloan,et al.  Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present , 2001, Science.

[82]  K. Crandall,et al.  TCS: a computer program to estimate gene genealogies , 2000, Molecular ecology.

[83]  L. Margulis,et al.  Morphogenesis by symbiogenesis. , 1998, International microbiology : the official journal of the Spanish Society for Microbiology.

[84]  W. Maddison Gene Trees in Species Trees , 1997 .

[85]  E. Kellogg,et al.  Testing for Phylogenetic Conflict Among Molecular Data Sets in the Tribe Triticeae (Gramineae) , 1996 .

[86]  A. Stewart,et al.  THE LICHEN GENUS RAMALINA IN NEW ZEALAND , 1996 .

[87]  R. Armstrong Dispersal of soredia from individual soralia of the lichen Hypogymnia physodes (L.) Nyl. in a simple wind tunnel , 1994 .

[88]  T. Bruns,et al.  ITS primers with enhanced specificity for basidiomycetes ‐ application to the identification of mycorrhizae and rusts , 1993, Molecular ecology.

[89]  C. Sing,et al.  A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. , 1992, Genetics.

[90]  R. Armstrong Soredial dispersal from individual soralia in the lichen Hypogymnia physodes (L.) Nyl. , 1992 .

[91]  M. Olech,et al.  Transect for aerobiological studies from Antarctica to Poland , 1991 .

[92]  Keith Bennett,et al.  QUATERNARY REFUGIA OF NORTH EUROPEAN TREES , 1991 .

[93]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[94]  H. Krog New Ramalina Species From Porto Santo, Madeira , 1990, The Lichenologist.

[95]  Esteban Manrique Reol,et al.  ESTUDIOS QUÍMICOS EN RAMALINA FARINÁCEA (L.) ACH. DEL CENTRO DE ESPAÑA , 1988 .

[96]  G. Stevens The lichen genus Ramalina in Australia , 1985 .

[97]  S. Jeffery Evolution of Protein Molecules , 1979 .