Resolution Sensitivity of a Compound Terrain Derivative as Computed from LiDAR-Based Elevation Data

New technologies such as Light Detection And Ranging (LiDAR) provide high resolution digital elevation data. These data offer new possibilities in the field of terrain modelling and analysis. However, not very much is known about the effects when these data are used to compute broadly applied terrain derivatives. In this paper the sensitivity of the Topographic Wetness Index (TWI) and its two constituting components gradient and Specific Catchment Area (SCA) regarding the resolution of LiDAR-based elevation data is examined. For coarser resolutions a shift in the TWI distribution to higher values is noted. TWI distributions at different resolutions differ significantly from each other. These findings have an impact on aspatial and spatial modelling based on the TWI.

[1]  Keith Beven,et al.  Analytical compensation between DTM grid resolution and effective values of staurated hydraulic conductivity within the TOPMODEL framework , 1997 .

[2]  Lawrence W. Martz,et al.  Grid size dependency of parameters extracted from digital elevation models , 1994 .

[3]  K. Beven,et al.  The in(a/tan/β) index:how to calculate it and how to use it within the topmodel framework , 1995 .

[4]  J. Y. Li,et al.  Estimating Basin Evapotranspiration Using Distributed Hydrologic Model , 2003 .

[5]  L. Raaflaub The effect of error in gridded digital elevation models on topographic analysis and on the distributed hydrological model TOPMODEL , 2002 .

[6]  Joseph. Wood,et al.  The geomorphological characterisation of Digital Elevation Models , 1996 .

[7]  Stuart N. Lane,et al.  A network‐index‐based version of TOPMODEL for use with high‐resolution digital topographic data , 2004 .

[8]  Baxter E. Vieux,et al.  DEM aggregation and smoothing effects on surface runoff modeling , 1993 .

[9]  Rod Ellis,et al.  Principles and methodology , 1985 .

[10]  S. Kienzle,et al.  Incorporating ancillary data to refine anthropogenically modified overland flow paths , 2006 .

[11]  James M. Byrne,et al.  Improving overland flow routing by incorporating ancillary road data into Digital Elevation Models , 2003 .

[12]  Marco Franchini,et al.  Physical interpretation and sensitivity analysis of the TOPMODEL , 1996 .

[13]  Ahti Lepistö,et al.  Modelling the hydrological behaviour of a mountain catchment using TOPMODEL , 1997 .

[14]  K. Beven,et al.  THE PREDICTION OF HILLSLOPE FLOW PATHS FOR DISTRIBUTED HYDROLOGICAL MODELLING USING DIGITAL TERRAIN MODELS , 1991 .

[15]  P. John,et al.  Effect of data source, grid resolution, and flow-routing method on computed topographic attributes , 2000 .

[16]  Jay C. Bell,et al.  Digital elevation model resolution: effects on terrain attribute calculation and quantitative soil-landscape modeling , 2001 .

[17]  Stephen J. Ventura,et al.  Fuzzy and isodata classification of landform elements from digital terrain data in Pleasant Valley, Wisconsin , 1997 .

[18]  James P. McNamara,et al.  An approach to understanding hydrologic connectivity on the hillslope and the implications for nutrient transport , 2003 .

[19]  K. Beven,et al.  Sensitivity to space and time resolution of a hydrological model using digital elevation data. , 1995 .

[20]  Richard J. Chorley Spatial analysis in geomorphology , 1972 .

[21]  R. A. MacMillan,et al.  A generic procedure for automatically segmenting landforms into landform elements using DEMs, heuristic rules and fuzzy logic , 2000, Fuzzy Sets Syst..

[22]  D. Wolock,et al.  Effects of digital elevation model map scale and data resolution on a topography‐based watershed model , 1994 .

[23]  S. Uhlenbrook,et al.  Modeling spatial patterns of saturated areas: An evaluation of different terrain indices , 2004 .

[24]  Qing Zhu,et al.  Digital terrain modeling - principles and methodology , 2004 .

[25]  A. Musy,et al.  Digital terrain analysis of the Haute-Mentue catchment an scale effect for hydrological modelling with TOPMODEL , 2000 .

[26]  Peter A. Burrough,et al.  High-resolution landform classification using fuzzy k-means , 2000, Fuzzy Sets Syst..

[27]  Stefan Kienzle,et al.  The Effect of DEM Raster Resolution on First Order, Second Order and Compound Terrain Derivatives , 2004, Trans. GIS.

[28]  Keith Beven,et al.  Testing the distributed water table predictions of TOPMODEL (allowing for uncertainty in model calibration): The death of TOPMODEL? , 2002 .

[29]  D. Montgomery,et al.  Digital elevation model grid size, landscape representation, and hydrologic simulations , 1994 .

[30]  Jay Gao,et al.  Resolution and Accuracy of Terrain Representation by Grid DEMs at a Micro-Scale , 1997, Int. J. Geogr. Inf. Sci..

[31]  Frederick E. Petry,et al.  Principles and Applications , 1997 .

[32]  G. Heuvelink,et al.  DEM resolution effects on shallow landslide hazard and soil redistribution modelling , 2005 .

[33]  K. Beven,et al.  A physically based, variable contributing area model of basin hydrology , 1979 .

[34]  M. J. Hall,et al.  Rainfall-Runoff Modelling , 2004 .

[35]  Jon Finch,et al.  Can soil moisture be mapped onto the terrain , 2004 .

[36]  James Brasington,et al.  Interactions between model predictions, parameters and DTM scales for TOPMODEL , 1998 .