Machine-learning-based dynamic-importance sampling for adaptive multiscale simulations
暂无分享,去创建一个
Peer-Timo Bremer | Brian Van Essen | Gautham Dharuman | Felice C. Lightstone | James N. Glosli | Helgi I. Ingólfsson | Harsh Bhatia | Shusen Liu | Timothy S. Carpenter | Piyush Karande | Tomas Oppelstrup | Chris Neale | Piyush Karande | P. Bremer | F. Lightstone | C. Neale | H. Ingólfsson | H. Bhatia | J. Glosli | T. Oppelstrup | B. V. Van Essen | Shusen Liu | Gautham Dharuman | P. Karande | Chris Neale | Brian Van Essen
[1] J. Geweke,et al. Bayesian Inference in Econometric Models Using Monte Carlo Integration , 1989 .
[2] Felice C Lightstone,et al. ddcMD: A fully GPU-accelerated molecular dynamics program for the Martini force field. , 2020, The Journal of chemical physics.
[3] Flip Korn,et al. Influence sets based on reverse nearest neighbor queries , 2000, SIGMOD 2000.
[4] Bastien Chopard,et al. Multiscale modelling and simulation: a position paper , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[5] R. A. Leibler,et al. On Information and Sufficiency , 1951 .
[6] D. Tieleman,et al. The MARTINI force field: coarse grained model for biomolecular simulations. , 2007, The journal of physical chemistry. B.
[7] James N Glosli,et al. Beyond finite-size scaling in solidification simulations. , 2006, Physical review letters.
[8] Helgi I. Ingólfsson,et al. Capturing Biologically Complex Tissue-Specific Membranes at Different Levels of Compositional Complexity , 2020, The journal of physical chemistry. B.
[9] David Andrs,et al. An Object-Oriented Finite Element Framework for Multiphysics Phase Field Simulations , 2012 .
[10] John A. Gunnels,et al. Extending stability beyond CPU millennium: a micron-scale atomistic simulation of Kelvin-Helmholtz instability , 2007, Proceedings of the 2007 ACM/IEEE Conference on Supercomputing (SC '07).
[11] Peer-Timo Bremer,et al. A massively parallel infrastructure for adaptive multiscale simulations: modeling RAS initiation pathway for cancer , 2019, SC.
[12] Berk Hess,et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .
[13] Frank McCormick,et al. RAS Proteins and Their Regulators in Human Disease , 2017, Cell.
[14] Tshilidzi Marwala,et al. Monte Carlo Dynamically Weighted Importance Sampling For Finite Element Model Updating , 2015, ArXiv.
[15] Pedro Tarazona,et al. Dynamic density functional theory of fluids , 1999 .
[16] Helgi I. Ingólfsson,et al. Computational Lipidomics with insane: A Versatile Tool for Generating Custom Membranes for Molecular Simulations. , 2015, Journal of chemical theory and computation.
[17] Channing J Der,et al. KRAS: The Critical Driver and Therapeutic Target for Pancreatic Cancer. , 2018, Cold Spring Harbor perspectives in medicine.
[18] Joris Borgdorff,et al. A framework for multi-scale modelling , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[19] Faming Liang,et al. Monte Carlo dynamically weighted importance sampling for spatial models with intractable normalizing constants , 2009 .
[20] F. Liang. Dynamically Weighted Importance Sampling in Monte Carlo Computation , 2002 .
[21] Jeff Johnson,et al. Billion-Scale Similarity Search with GPUs , 2017, IEEE Transactions on Big Data.
[22] Ian T. Cameron,et al. Classification and analysis of integrating frameworks in multiscale modelling , 2004 .
[23] Sam Ade Jacobs,et al. Scalable Topological Data Analysis and Visualization for Evaluating Data-Driven Models in Scientific Applications , 2019, IEEE Transactions on Visualization and Computer Graphics.
[24] Peter Lindstrom,et al. Topological Spines: A Structure-preserving Visual Representation of Scalar Fields , 2011, IEEE Transactions on Visualization and Computer Graphics.