The core–mantle boundary layer and deep Earth dynamics

Recent seismological work has revealed new structures in the boundary layer between the Earth's core and mantle that are altering and expanding perspectives of the role this region plays in both core and mantle dynamics. Clear challenges for future research in seismological, experimental, theoretical and computational geophysics have emerged, holding the key to understanding both this dynamic system and geological phenomena observed at the Earth's surface.

[1]  J. Revenaugh,et al.  Seismic Evidence of Partial Melt Within a Possibly Ubiquitous Low-Velocity Layer at the Base of the Mantle , 1997 .

[2]  P. Silver,et al.  Laboratory and seismological observations of lower mantle isotropy , 1995 .

[3]  Mrinal K. Sen,et al.  Evidence for anisotropy in the deep mantle beneath Alaska , 1996 .

[4]  M. Weber P- and S-wave reflections from anomalies in the lowermost mantle , 1993 .

[5]  J. Kendall,et al.  Lateral variations in D″ below the Caribbean , 1996 .

[6]  M. Gurnis,et al.  Interaction of mantle dregs with convection: Lateral heterogeneity at the core‐mantle boundary , 1986 .

[7]  S. Karato,et al.  Diffusion Creep in Perovskite: Implications for the Rheology of the Lower Mantle , 1992, Science.

[8]  R. Hilst,et al.  High resolution global tomography : a snapshot of convection in the Earth , 1997 .

[9]  E. R. Engdahl,et al.  Evidence for deep mantle circulation from global tomography , 1997, Nature.

[10]  Jeremy Bloxham,et al.  Fluid flow near the surface of Earth's outer core , 1991 .

[11]  K. Hoffman Dipolar reversal states of the geomagnetic field and core–mantle dynamics , 1992, Nature.

[12]  J. Vidale,et al.  Evidence for partial melt at the core–mantle boundary north of Tonga from the strong scattering of seismic waves , 1998, Nature.

[13]  P. Stoffers,et al.  Oxygen isotope evidence for recycled crust in the source of EM-type ocean island basalts , 1993, Nature.

[14]  Albrecht W. Hofmann,et al.  Mantle plumes from ancient oceanic crust , 1982 .

[15]  R. Jeanloz,et al.  Implications of a metal-bearing chemical boundary layer in D″ for mantle dynamics , 1996 .

[16]  N. Ribe,et al.  The global hotspot distribution and instability of D (double prime) , 1994 .

[17]  M. Drake,et al.  Element partitioning between Mg-perovskite, magnesiowüstite, and silicate melt at conditions of the Earth's mantle , 1994 .

[18]  A search for source side mantle anisotropy , 1992 .

[19]  G. Laske,et al.  A shear - velocity model of the mantle , 1996, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[20]  E. Garnero,et al.  Seismic Evidence for Partial Melt at the Base of Earth's Mantle , 1996, Science.

[21]  T. Ahrens,et al.  High‐pressure equation of state of molten anorthite and diopside , 1989 .

[22]  Sri Widiyantoro,et al.  Global seismic tomography: A snapshot of convection in the Earth: GSA Today , 1997 .

[23]  T. Ahrens,et al.  Melting of (Mg,Fe)2SiO4 at the Core-Mantle Boundary of the Earth , 1997, Science.

[24]  D. Gubbins,et al.  Geomagnetism, Earth rotation and the electrical conductivity of the lower mantle , 1995 .

[25]  R. Boehler Temperatures in the Earth's core from melting-point measurements of iron at high static pressures , 1993, Nature.

[26]  Mrinal K. Sen,et al.  Seismic anisotropy in the core–mantle transition zone , 1998 .

[27]  J. Poirier Core-infiltrated mantle and the nature of the D″ layer , 1993 .

[28]  G. Davies,et al.  Ocean bathymetry and mantle convection: 1. Large‐scale flow and hotspots , 1988 .

[29]  B. Storey The role of mantle plumes in continental breakup: case histories from Gondwanaland , 1995, Nature.

[30]  Xi J. Song,et al.  Pressure‐temperature range of reactions between liquid iron in the outer core and mantle silicates , 1994 .

[31]  C. Farnetani Excess temperature of mantle plumes: The role of chemical stratification across D″ , 1997 .

[32]  B. Hager,et al.  Onset of mantle plumes in the presence of preexisting convection , 1988 .

[33]  C. Young,et al.  The Core-Mantle Boundary , 1987 .

[34]  J. Morgan,et al.  Osmium-187 Enrichment in Some Plumes: Evidence for Core-Mantle Interaction? , 1995, Science.

[35]  Thorne Lay,et al.  The core-mantle boundary region , 1995 .

[36]  D. Yuen,et al.  Centerline temperature of mantle plumes in various geometries: Incompressible flow , 1996 .

[37]  J. Whitehead,et al.  Dynamics of laboratory diapir and plume models , 1975 .

[38]  Yu.P. Orovetskii Mantle Plumes , 2020 .

[39]  Frank D. Stacey,et al.  The thermal boundary-layer interpretation of D″ and its role as a plume source , 1983 .

[40]  Michael E. Wysession,et al.  Large-scale structure at the core–mantle boundary from diffracted waves , 1996, Nature.

[41]  M. Richards,et al.  Hotspots, mantle plumes, flood basalts, and true polar wander , 1991 .

[42]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[43]  Norman H. Sleep,et al.  Hotspots and Mantle Plumes' Some Phenomenology , 1990 .

[44]  M. Richards,et al.  The dynamics of Cenozoic and Mesozoic plate motions , 1998 .

[45]  John H. Jones,et al.  Origin of the earth , 1990 .

[46]  D. Helmberger,et al.  Localized boundary layer below the mid-Pacific velocity anomaly identified from a PcP precursor , 1995 .

[47]  Roger L. Larson,et al.  Mantle plumes control magnetic reversal frequency , 1991 .

[48]  T. Lay Structure of the core‐mantle transition zone , 1989 .

[49]  Williams,et al.  A correlation between ultra-Low basal velocities in the mantle and hot spots , 1998, Science.

[50]  T. Lay,et al.  A lower mantle S-wave triplication and the shear velocity structure of D" , 1983 .

[51]  T. Katsura,et al.  Reactions between molten iron and silicate melts at high pressure: Implications for the chemical evolution of Earth's core , 1995 .

[52]  H. Wenk,et al.  Superplasticity in Earth's Lower Mantle: Evidence from Seismic Anisotropy and Rock Physics , 1995, Science.

[53]  C. Laj,et al.  Geomagnetic reversal paths , 1991, Nature.

[54]  R. Jeanloz,et al.  Earth's Core-Mantle Boundary: Results of Experiments at High Pressures and Temperatures , 1991, Science.

[55]  C. Young,et al.  Scale lengths of shear velocity heterogeneity at the base of the mantle from S wave differential travel times , 1997 .

[56]  J. Poirier,et al.  Electrical conductivity of the Earth's lower mantle , 1989, Nature.

[57]  T. Lay,et al.  Seismic anisotropy in the lowermost mantle beneath the Pacific , 1998 .

[58]  Y. Syono,et al.  High-pressure research : application to earth and planetary sciences , 1992 .

[59]  L. Meynadier,et al.  Palaeomagnetic constraints on the geometry of the geomagnetic field during reversals , 1992, Nature.

[60]  D. Jurdy,et al.  Subducted lithosphere, hotspots, and the geoid , 1980 .

[61]  S. Flatté,et al.  Inhomogeneities near the core-mantle boundary evidenced from scattered waves: A review , 1990 .

[62]  G. Backus Long-Wave Elastic Anisotropy Produced by Horizontal Layering , 1962 .

[63]  D. Helmberger,et al.  A very slow basal layer underlying large-scale low-velocity anomalies in the lower mantle beneath the Pacific: evidence from core phases , 1995 .

[64]  P. Silver,et al.  Constraints from seismic anisotropy on the nature of the lowermost mantle , 1996, Nature.

[65]  Barbara Romanowicz,et al.  Global mantle shear velocity model developed using nonlinear asymptotic coupling theory , 1996 .

[66]  M. Richards,et al.  Thermal entrainment and melting in mantle plumes , 1995 .

[67]  T. Lay,et al.  Lateral variations in lowermost mantle shear wave anisotropy beneath the north Pacific and Alaska , 1997 .

[68]  D. McKenzie,et al.  Melt Generation by Plumes: A Study of Hawaiian Volcanism , 1991 .

[69]  G. Neumann,et al.  Electromagnetic core‐mantle coupling and paleomagnetic reversal paths , 1996 .

[70]  R. Jeanloz,et al.  Melting relations in the iron-sulfur system at ultra-high pressures - Implications for the thermal state of the earth , 1990 .

[71]  F. Guyot,et al.  High‐pressure and high‐temperature reactions between silicates and liquid iron alloys, in the diamond anvil cell, studied by analytical electron microscopy , 1992 .

[72]  Wei-jia Su,et al.  Degree 12 model of shear velocity heterogeneity in the mantle , 1994 .

[73]  D. Helmberger,et al.  Seismic detection of a thin laterally varying boundary layer at the base of the mantle beneath the central‐Pacific , 1996 .

[74]  R. Jeanloz,et al.  Laboratory studies of the electrical conductivity of silicate perovskites at high pressures and temperatures , 1990 .

[75]  H. Nataf,et al.  Seismological detection of a mantle plume? , 1993, Nature.

[76]  N. Sleep Gradual entrainment of a chemical layer at the base of the mantle by overlying convection , 1988 .

[77]  F. Mulargia,et al.  The periodicity of geomagnetic reversals , 1992 .

[78]  D. Helmberger,et al.  Modelling D″ structure beneath Central America with broadband seismic data , 1997 .

[79]  T. Lay,et al.  A strongly negative shear velocity gradient and lateral variability in the lowermost mantle beneath the Pacific , 1997 .

[80]  E. Ohtani,et al.  Transition metal partitioning between lower mantle and core materials at 27 GPa , 1991 .

[81]  B. Romanowicz,et al.  Seismic anisotropy in the D″ layer , 1995 .

[82]  C. Young,et al.  Analysis of seismic SV waves in the core's penumbra , 1991 .

[83]  D. Bercovici,et al.  The non-linear initiation of diapirs and plume heads , 1997 .

[84]  McSween Hy,et al.  Evidence for Life in a Martian Meteorite , 1997 .