Discriminating Qiangtang, Lhasa, and Himalayan sediment sources in the Tibetan Plateau by detrital-zircon U-Pb age and Hf isotope facies

[1]  Qiang Wang,et al.  Late Early Cretaceous magmatic constraints on the timing of closure of the Bangong–Nujiang Tethyan Ocean, Central Tibet , 2022, Lithos.

[2]  E. Garzanti,et al.  From the southern Gangdese Yeba arc to the Bangong-Nujiang Ocean: Provenance of the Upper Jurassic-Lower Cretaceous Lagongtang Formation (northern Lhasa, Tibet) , 2022, Palaeogeography, Palaeoclimatology, Palaeoecology.

[3]  Peter A. Cawood,et al.  Evaluating sediment recycling through combining inherited petrogenic and acquired sedimentary features of multiple detrital minerals , 2021, Basin Research.

[4]  Stephen J. Puetz,et al.  Analyses from a validated global UPb detrital zircon database: Enhanced methods for filtering discordant UPb zircon analyses and optimizing crystallization age estimates , 2021 .

[5]  Peter A. Cawood,et al.  Resolving the Paleogeographic Puzzle of the Lhasa Terrane in Southern Tibet , 2021, Geophysical Research Letters.

[6]  X. Fu,et al.  Palaeoenvironment evolution and organic matter accumulation of the Upper Triassic mudstones from the eastern Qiangtang Basin (Tibet), eastern Tethys , 2021 .

[7]  E. Garzanti,et al.  Mid-Cretaceous thick carbonate accumulation in Northern Lhasa (Tibet): eustatic vs. tectonic control? , 2021, GSA Bulletin.

[8]  P. Vermeesch,et al.  Provenance and recycling of Sahara Desert sand , 2021, Earth-Science Reviews.

[9]  Qun Liu,et al.  Sedimentological responses to initial continental collision: triggering of sand injection and onset of mass movement in a syn-collisional trench basin, Saga, southern Tibet , 2021, Journal of the Geological Society.

[10]  L. Solari,et al.  Multidimensional Scaling (MDS): A quantitative approximation of zircon ages to sedimentary provenance with some examples from Mexico , 2021 .

[11]  Tianyang Wang,et al.  Biostratigraphy and provenance analysis of the Cretaceous to Palaeogene deposits in southern Tibet: Implications for the India‐Asia collision , 2021, Basin Research.

[12]  Haishui Jiang,et al.  A late Permian–Triassic trench‐slope basin in the Central Qiangtang metamorphic belt, Northern Tibet: Stratigraphy, sedimentology, syndepositional deformation and tectonic implications , 2021, Basin Research.

[13]  D. Wyman,et al.  Subduction erosion and crustal material recycling indicated by adakites in central Tibet , 2021, Geology.

[14]  E. Garzanti,et al.  New Precise Dating of the India‐Asia Collision in the Tibetan Himalaya at 61 Ma , 2021, Geophysical Research Letters.

[15]  J. Saylor,et al.  Two‐Dimensional Quantitative Comparison of Density Distributions in Detrital Geochronology and Geochemistry , 2021, Geochemistry, Geophysics, Geosystems.

[16]  E. Garzanti,et al.  Recognition of trench basins in collisional orogens: Insights from the Yarlung Zangbo suture zone in southern Tibet , 2020, Science China Earth Sciences.

[17]  Juan Li,et al.  From extension to tectonic inversion: Mid-Cretaceous onset of Andean-type orogeny in the Lhasa block and early topographic growth of Tibet , 2020 .

[18]  An-Bo Luo,et al.  Aptian Flysch in Central Tibet: Constraints on the Timing of Closure of the Bangong‐Nujiang Tethyan Ocean , 2020, Tectonics.

[19]  F. Cai,et al.  Sedimentology and provenance of newly identified Upper Cretaceous trench basin strata, Dênggar, southern Tibet: Implications for development of the Eurasian margin prior to India–Asia collision , 2020, Basin Research.

[20]  Yalin Li,et al.  Provenance of Middle Jurassic sequences in the Northern Qiangtang: implications for Mesozoic exhumation of the Central Tibetan Mountain Range , 2020, International Geology Review.

[21]  Juan Li,et al.  Eustatic and tectonic control on the evolution of the Jurassic North Qiangtang Basin, northern Tibet, China: Impact on the petroleum system , 2020 .

[22]  Xiumian Hu,et al.  Mesozoic Subduction Accretion History in Central Tibet Constrained From Provenance Analysis of the Mugagangri Subduction Complex in the Bangong‐Nujiang Suture Zone , 2020, Tectonics.

[23]  Xiumian Hu,et al.  Pre‐Oxfordian (>163 Ma) Ophiolite Obduction in Central Tibet , 2020, Geophysical Research Letters.

[24]  P. Vermeesch,et al.  Sandstone provenance analysis in Longyan supports the existence of a Late Paleozoic continental arc in South China , 2020, Tectonophysics.

[25]  Qiang Wang,et al.  Early Paleozoic S-type granites as the basement of Southern Qiantang Terrane, Tibet , 2020 .

[26]  Peter A. Cawood,et al.  Reconciling Orogenic Drivers for the Evolution of the Bangong‐Nujiang Tethys During Middle‐Late Jurassic , 2020, Tectonics.

[27]  Zhenyu Li,et al.  Provenance analysis of Cretaceous peripheral foreland basin in central Tibet: Implications to precise timing on the initial Lhasa-Qiangtang collision , 2020, Tectonophysics.

[28]  G. H. Wang,et al.  Late Mesozoic tectonic evolution of the central Bangong–Nujiang Suture Zone, central Tibetan Plateau , 2020 .

[29]  Ming Wang,et al.  Dating of detrital zircon grains and fossils from Late Palaeozoic sediments of the Baruo area, Tibet: constraints on the Late Palaeozoic evolution of the Lhasa terrane , 2020, International Geology Review.

[30]  A. Weislogel,et al.  Orogenic Recycling of Detrital Zircons Characterizes Age Distributions of North American Cordilleran Strata , 2019, Tectonics.

[31]  L. Ding,et al.  The Ancestral Lhasa River: A Late Cretaceous trans-arc river that drained the proto–Tibetan Plateau , 2019, Geology.

[32]  C. Garzione,et al.  Initial growth of the Northern Lhasaplano, Tibetan Plateau in the early Late Cretaceous (ca. 92 Ma) , 2019, GSA Bulletin.

[33]  Wei Li,et al.  Early Cretaceous sedimentary evolution of the northern Lhasa terrane and the timing of initial Lhasa-Qiangtang collision , 2019, Gondwana Research.

[34]  L. Ding,et al.  Birth and demise of the Bangong-Nujiang Tethyan Ocean: A review from the Gerze area of central Tibet , 2019, Earth-Science Reviews.

[35]  Stephen J. Puetz,et al.  Time series analysis of mantle cycles Part I: Periodicities and correlations among seven global isotopic databases , 2019, Geoscience Frontiers.

[36]  Ming Wang,et al.  Palaeontology and U–Pb detrital zircon geochronology of Upper Triassic strata on the northern margin of the Bangong Co–Nujiang suture zone, Tibet: Constraints on the age of opening of the Meso-Tethys , 2019, Journal of Asian Earth Sciences.

[37]  E. Garzanti,et al.  The Langjiexue Group is an in situ sedimentary sequence rather than an exotic block: Constraints from coeval Upper Triassic strata of the Tethys Himalaya (Qulonggongba Formation) , 2019, Science China Earth Sciences.

[38]  Xiumian Hu,et al.  Discovery of Middle Jurassic trench deposits in the Bangong-Nujiang suture zone: Implications for the timing of Lhasa-Qiangtang initial collision , 2019, Tectonophysics.

[39]  W. Griffin,et al.  Neoproterozoic sedimentary rocks track the location of the Lhasa Block during the Rodinia breakup , 2019, Precambrian Research.

[40]  G. Ghoshal,et al.  Use and abuse of detrital zircon U-Pb geochronology—A case from the Río Orinoco delta, eastern Venezuela , 2018, Geology.

[41]  Xiumian Hu,et al.  The disappearance of a Late Jurassic remnant sea in the southern Qiangtang Block (Shamuluo Formation, Najiangco area): Implications for the tectonic uplift of central Tibet , 2018, Palaeogeography, Palaeoclimatology, Palaeoecology.

[42]  E. Crouch,et al.  Upper Cretaceous trench deposits of the Neo-Tethyan subduction zone: Jiachala Formation from Yarlung Zangbo suture zone in Tibet, China , 2018, Science China Earth Sciences.

[43]  M. Malusà,et al.  The Sedimentology of Detrital Thermochronology , 2018, Fission-Track Thermochronology and its Application to Geology.

[44]  Z. Sylvester,et al.  detritalPy: A Python‐based toolset for visualizing and analysing detrital geo‐thermochronologic data , 2018, The Depositional Record.

[45]  P. Vermeesch,et al.  The zircon story of the Nile: Time‐structure maps of source rocks and discontinuous propagation of detrital signals , 2018, Basin Research.

[46]  T. Andersen,et al.  Successive sedimentary recycling regimes in southwestern Gondwana: Evidence from detrital zircons in Neoproterozoic to Cambrian sedimentary rocks in southern Africa , 2018, Earth-Science Reviews.

[47]  E. Garzanti,et al.  Discovery of Upper Cretaceous Neo-Tethyan trench deposits in south Tibet (Luogangcuo Formation) , 2018 .

[48]  J. Dai,et al.  Origin of the ca. 50 Ma Linzizong shoshonitic volcanic rocks in the eastern Gangdese arc, southern Tibet , 2018 .

[49]  W. White,et al.  Rapid formation of eclogites during a nearly closed ocean: Revisiting the Pianshishan eclogite in Qiangtang, central Tibetan Plateau , 2018 .

[50]  W. Matthews,et al.  Latest Neoproterozoic to Cambrian detrital zircon facies of western Laurentia , 2017 .

[51]  L. Ding,et al.  Late Paleozoic and Mesozoic evolution of the Lhasa Terrane in the Xainza area of southern Tibet , 2017 .

[52]  H. Sinclair,et al.  Early Cretaceous palaeogeographic evolution of the Coqen Basin in the Lhasa Terrane, southern Tibetan Plateau , 2017 .

[53]  L. Ding,et al.  Provenance of Mesozoic clastic rocks within the Bangong-Nujiang suture zone, central Tibet: Implications for the age of the initial Lhasa-Qiangtang collision , 2017 .

[54]  E. Garzanti,et al.  Sedimentary and tectonic evolution of the southern Qiangtang basin: Implications for the Lhasa‐Qiangtang collision timing , 2017 .

[55]  E. Garzanti,et al.  The birth of the Xigaze forearc basin in southern Tibet , 2017 .

[56]  Jian-Jun Fan,et al.  Ordovician sedimentation and bimodal volcanism in the Southern Qiangtang terrane of northern Tibet: Implications for the evolution of the northern Gondwana margin , 2017 .

[57]  L. Ding,et al.  The subduction-accretion history of the Bangong-Nujiang Ocean: Constraints from provenance and geochronology of the Mesozoic strata near Gaize, central Tibet , 2017 .

[58]  Jianlin Chen,et al.  Sedimentary record of Jurassic northward subduction of the Bangong–Nujiang Ocean: insights from detrital zircons , 2017 .

[59]  L. Ding,et al.  Zircon U–Pb age and Hf isotopic compositions of Mesozoic granitoids in southern Qiangtang, Tibet: Implications for the subduction of the Bangong–Nujiang Tethyan Ocean , 2017 .

[60]  Xiumian Hu,et al.  Discovery of the early Jurassic Gajia mélange in the Bangong–Nujiang suture zone: Southward subduction of the Bangong–Nujiang Ocean? , 2017, International Journal of Earth Sciences.

[61]  X. Fang,et al.  Paleomagnetic data bearing on the Mesozoic deformation of the Qiangtang Block: Implications for the evolution of the Paleo- and Meso-Tethys , 2016 .

[62]  G. Gehrels,et al.  The Liuqu Conglomerate, southern Tibet: Early Miocene basin development related to deformation within the Great Counter Thrust system , 2016 .

[63]  E. Garzanti From static to dynamic provenance analysis—Sedimentary petrology upgraded , 2016 .

[64]  Wei-Qiang Ji,et al.  Upper Triassic turbidites of the northern Tethyan Himalaya (Langjiexue Group): The terminal of a sediment-routing system sourced in the Gondwanide Orogen , 2016 .

[65]  E. Garzanti,et al.  Sandstone provenance and tectonic evolution of the Xiukang Mélange from Neotethyan subduction to India–Asia collision (Yarlung-Zangbo suture, south Tibet) , 2016 .

[66]  E. Garzanti,et al.  New insights into the timing of the India-Asia collision from the Paleogene Quxia and Jialazi formations of the Xigaze forearc basin, South Tibet , 2016 .

[67]  E. Garzanti,et al.  The timing of India-Asia collision onset – Facts, theories, controversies , 2016 .

[68]  Qing-guo Zhai,et al.  Oldest Paleo-Tethyan ophiolitic mélange in the Tibetan Plateau , 2016 .

[69]  Li-quan Wang,et al.  Evolution of the Bangong-Nujiang Tethyan ocean: Insights from the geochronology and geochemistry of mafic rocks within ophiolites , 2016 .

[70]  L. Ding,et al.  Late Triassic paleogeographic reconstruction along the Neo–Tethyan Ocean margins, southern Tibet , 2016 .

[71]  X. Zhang,et al.  Late Triassic initial subduction of the Bangong‐Nujiang Ocean beneath Qiangtang revealed: stratigraphic and geochronological evidence from Gaize, Tibet , 2016 .

[72]  C. Kirkland,et al.  Visualizing the sedimentary response through the orogenic cycle: A multidimensional scaling approach , 2016 .

[73]  Yiming Liu,et al.  Depositional environment and provenance of the upper Permian–Lower Triassic Tianquanshan Formation, northern Tibet: implications for the Palaeozoic evolution of the Southern Qiangtang, Lhasa, and Himalayan terranes in the Tibetan Plateau , 2016 .

[74]  F. Mattern,et al.  Multiple sources of the Upper Triassic flysch in the eastern Himalaya Orogen, Tibet, China: Implications to palaeogeography and palaeotectonic evolution , 2016 .

[75]  T. C. Moore,et al.  Direct stratigraphic dating of India-Asia collision onset at the Selandian (middle Paleocene, 59 ± 1 Ma) , 2015 .

[76]  M. Sandiford,et al.  Constraining the age of Liuqu Conglomerate, southern Tibet: Implications for evolution of the India-Asia collision zone , 2015 .

[77]  Pieter Vermeesch,et al.  Making geological sense of 'Big Data' in sedimentary provenance analysis , 2015 .

[78]  B. Carrapa,et al.  Sedimentology, provenance and geochronology of the upper Cretaceous–lower Eocene western Xigaze forearc basin, southern Tibet , 2015 .

[79]  Juan Li,et al.  Paleogene carbonate microfacies and sandstone provenance (Gamba area, South Tibet): Stratigraphic response to initial India–Asia continental collision , 2015 .

[80]  B. Xia,et al.  Central Tibetan Meso-Tethyan oceanic plateau , 2014 .

[81]  E. Garzanti,et al.  Xigaze forearc basin revisited (South Tibet): Provenance changes and origin of the Xigaze Ophiolite , 2014 .

[82]  Zhidan Zhao,et al.  Northward subduction of Bangong-Nujiang Tethys: Insight from Late Jurassic intrusive rocks from Bangong Tso in western Tibet , 2014 .

[83]  Ming Wang,et al.  Petrology, geochemistry, and geochronology of the Zhonggang ocean island, northern Tibet: implications for the evolution of the Banggongco–Nujiang oceanic arm of the Neo-Tethys , 2014 .

[84]  A. Pullen,et al.  Mesozoic tectonic history and lithospheric structure of the Qiangtang terrane: Insights from the Qiangtang metamorphic belt, central Tibet , 2014 .

[85]  G. Gehrels Detrital Zircon U-Pb Geochronology Applied to Tectonics , 2014 .

[86]  G. Gehrels,et al.  What happens when n= 1000? Creating large-n geochronological datasets with LA-ICP-MS for geologic investigations , 2014 .

[87]  G. Gehrels,et al.  Paleocene‐Eocene foreland basin evolution in the Himalaya of southern Tibet and Nepal: Implications for the age of initial India‐Asia collision , 2014 .

[88]  M. Sandiford,et al.  Provenance of Late Triassic sediments in central Lhasa terrane, Tibet and its implication , 2014 .

[89]  Philip L. Gibbard,et al.  The ICS International Chronostratigraphic Chart , 2013 .

[90]  D. Wyman,et al.  Late Cretaceous (100–89 Ma) magnesian charnockites with adakitic affinities in the Milin area, eastern Gangdese: Partial melting of subducted oceanic crust and implications for crustal growth in southern Tibet , 2013 .

[91]  Z. Hou,et al.  The origin and pre-Cenozoic evolution of the Tibetan Plateau , 2013 .

[92]  P. Vermeesch Multi-sample comparison of detrital age distributions , 2013 .

[93]  G. Gehrels,et al.  Provenance analysis of the Mesozoic Hoh‐Xil‐Songpan‐Ganzi turbidites in northern Tibet: Implications for the tectonic evolution of the eastern Paleo‐Tethys Ocean , 2013 .

[94]  L. Ding,et al.  Tectonostratigraphy and provenance of an accretionary complex within the Yarlung-Zangpo suture zone, southern Tibet: Insights into subduction-accretion processes in the Neo-Tethys , 2012 .

[95]  H. Sinclair,et al.  Late Cretaceous‐Palaeogene stratigraphic and basin evolution in the Zhepure Mountain of southern Tibet: implications for the timing of India‐Asia initial collision , 2012 .

[96]  B. Xia,et al.  Late Mesozoic tectonic evolution and growth of the Tibetan plateau prior to the Indo-Asian collision , 2012 .

[97]  P. Vermeesch On the visualisation of detrital age distributions , 2012 .

[98]  Todd A. LaMaskin Detrital zircon facies of Cordilleran terranes in western North America , 2012 .

[99]  E. Garzanti,et al.  Subsidence history of the Tethys Himalaya , 2012 .

[100]  G. Gehrels Detrital Zircon U‐Pb Geochronology: Current Methods and New Opportunities , 2012 .

[101]  G. Gehrels,et al.  Detrital zircon geochronology of pre‐Tertiary strata in the Tibetan‐Himalayan orogen , 2011 .

[102]  Y. Dilek,et al.  Lhasa terrane in southern Tibet came from Australia , 2011 .

[103]  Qing-guo Zhai,et al.  Triassic eclogites from central Qiangtang, northern Tibet, China: Petrology, geochronology and metamorphic P–T path , 2011 .

[104]  G. Gehrels,et al.  Metamorphic rocks in central Tibet: Lateral variations and implications for crustal structure , 2011 .

[105]  Xiumian Hu,et al.  Petrologic and Provenance Analysis of the Zongzhuo Mélange in Baisha Area,Gyangzê,Southern Tibet , 2011 .

[106]  P. Bown,et al.  Timing of India‐Asia collision: Geological, biostratigraphic, and palaeomagnetic constraints , 2010 .

[107]  Xiumian Hu,et al.  Provenance of the Liuqu Conglomerate in southern Tibet: A Paleogene erosional record of the Himalayan–Tibetan orogen , 2010 .

[108]  K. Pogue,et al.  Extraordinary transport and mixing of sediment across Himalayan central Gondwana during the Cambrian–Ordovician , 2010 .

[109]  Wei-Qiang Ji,et al.  Detrital zircon U–Pb and Hf isotopic data from the Xigaze fore-arc basin: Constraints on Transhimalayan magmatic evolution in southern Tibet , 2010 .

[110]  W. Griffin,et al.  Provenance of Lower Cretaceous Wölong Volcaniclastics in the Tibetan Tethyan Himalaya: implications for the final breakup of Eastern Gondwana , 2010 .

[111]  Wang Ming,et al.  Significant progress on Pan-African and Early Paleozoic orogenic events in Qinghai-Tibet Plateau-discovery of Pan-African orogenic unconformity and Cambrian System in the Gangdise area, Tibet, China , 2010 .

[112]  Q. Zhang,et al.  Eocene Neotethyan slab breakoff in southern Tibet inferred from the Linzizong volcanic record , 2009 .

[113]  Kai‐Jun Zhang,et al.  Eclogites in the interior of the Tibetan Plateau and their geodynamic implications , 2009 .

[114]  G. Gehrels,et al.  Recycling detrital zircons: A case study from the Cretaceous Bisbee Group of southern Arizona , 2009 .

[115]  Wei-Qiang Ji,et al.  Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet , 2009 .

[116]  P. Robinson,et al.  Geochemistry and Sm–Nd and Rb–Sr isotopic composition of eclogite in the Lhasa terrane, Tibet, and its geological significance , 2009 .

[117]  M. Searle,et al.  Stratigraphic correlation of Cambrian-Ordovician deposits along the Himalaya: Implications for the age and nature of rocks in the Mount Everest region , 2009 .

[118]  P. Robinson,et al.  Discovery of an eclogite belt in the Lhasa block, Tibet: A new border for Paleo-Tethys? , 2009 .

[119]  Q. Zhang,et al.  Zircon SHRIMP U-Pb ages of the Gangdese Batholith and implications for Neotethyan subduction in southern Tibet , 2008 .

[120]  G. Gehrels,et al.  Mediterranean-style closure of the Paleo-Tethys ocean , 2008 .

[121]  A. Leier,et al.  Lower Cretaceous Strata in the Lhasa Terrane, Tibet, with Implications for Understanding the Early Tectonic History of the Tibetan Plateau , 2007 .

[122]  G. Gehrels,et al.  Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet , 2007 .

[123]  Peter A. Cawood,et al.  Linking accretionary orogenesis with supercontinent assembly , 2007 .

[124]  Xiaoming Qu,et al.  Mantle contributions to crustal thickening during continental collision: Evidence from Cenozoic igneous rocks in southern Tibet , 2007 .

[125]  G. Gehrels,et al.  Late Cretaceous to middle Tertiary basin evolution in the central Tibetan Plateau: Changing environments in response to tectonic partitioning, aridification, and regional elevation gain , 2007 .

[126]  Dunyi Liu,et al.  Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet , 2006 .

[127]  Yuxiu Zhang,et al.  The blueschist-bearing Qiangtang metamorphic belt (northern Tibet, China) as an in situ suture zone: Evidence from geochemical comparison with the Jinsa suture , 2006 .

[128]  Chengshan Wang,et al.  Geochemistry of sedimentary rocks from mélange and flysch units south of the Yarlung Zangbo suture zone, southern Tibet , 2006 .

[129]  Wei Yu-shuai PROVENANCE ANALYSIS OF PALEOGENE GYACHALA FORMATION IN SOUTHERN TIBET:IMPLICATION FOR THE INITIATION OF COLLISION BETWEEN INDIA AND ASIA , 2006 .

[130]  Y. Najman The detrital record of orogenesis: A review of approaches and techniques used in the Himalayan sedimentary basins , 2005 .

[131]  T. Harrison,et al.  Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet , 2005 .

[132]  Wencan Liu,et al.  Discovery of Paleogene marine stratum along the southern side of Yarlung-Zangbo suture zone and its implications in tectonics , 2005 .

[133]  C. Guorong,et al.  Discovery of an uniformity between the Upper Triassic Quehala Group and its underlying rock series in the central segment of the Bangong Co-Nujiang junction zone, Tibet, China , 2005 .

[134]  M. Hazelton,et al.  Comparison of detrital zircon age distributions by kernel functional estimation , 2004 .

[135]  Keith N. Sircombe,et al.  AgeDisplay: an EXCEL workbook to evaluate and display univariate geochronological data using binned frequency histograms and probability density distributions , 2004, Comput. Geosci..

[136]  T. Harrison,et al.  Tectonic evolution of the early Mesozoic blueschist‐bearing Qiangtang metamorphic belt, central Tibet , 2003 .

[137]  Li Guo-biao EOCENE MICROFOSSILS IN SOUTHERN TIBET AND THE FINAL CLOSING OF THE TIBET-TETHYS , 2003 .

[138]  Wang Chengshan Palaeocurrent Data: Evidence for the Source of the Langjiexue Group in Southern Tibet , 2003 .

[139]  Jiang Yuan-sheng AGE AND SIGNIFICANCE OF VOLCANIC ROCK OF EARLY CRETACEOUS IN THE BAN GE-QIELICUO AREAA IN TIBET , 2002 .

[140]  J. Aitchison,et al.  Upper Paleocene radiolarians from the Yamdrok melange, south Xizang (Tibet), China , 2002 .

[141]  G. Gehrels,et al.  Tectonic implications of U-Pb zircon ages of the himalayan orogenic belt in nepal , 2000, Science.

[142]  T. Harrison,et al.  Blueschist-bearing metamorphic core complexes in the Qiangtang block reveal deep crustal structure of northern Tibet , 2000 .

[143]  E. Garzanti Stratigraphy and sedimentary history of the Nepal Tethys Himalaya passive margin , 1999 .

[144]  Chengshan Wang,et al.  Discovery and significance of Cretaceous fossils from the Xigaze Forearc Basin, Tibet , 1998 .

[145]  F. Berra,et al.  The Tethys Himalayan passive margin from Late Triassic to Early Cretaceous (South Tibet) , 1998 .

[146]  H. Willems,et al.  Stratigraphy of the upper cretaceous and lower tertiary strata in the Tethyan Himalayas of Tibet (Tingri area, China) , 1996 .

[147]  G. Einsele,et al.  Various types of olistostromes in a closing ocean basin, Tethyan Himalaya (Cretaceous, Tibet) , 1996 .

[148]  S. Taylor,et al.  The geochemical evolution of the continental crust , 1995 .

[149]  L. Ratschbacher,et al.  The Xigaze forearc basin: evolution and facies architecture (Cretaceous, Tibet) , 1994 .

[150]  M. Leeder,et al.  Sedimentology, palaeoecology and palaeoenvironmental evolution of the 1985 Lhasa to Golmud Geotraverse , 1988, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[151]  D. Cooper,et al.  The closing of Tethys and the tectonics of the Himalaya , 1987 .

[152]  E. Garzanti,et al.  Sedimentary evidence of a Cambro-Ordovician orogenic event in the Northwestern Himalaya , 1986 .

[153]  Philip England,et al.  The Cretaceous‐tertiary deformation of the Lhasa Block and its implications for crustal thickening in Tibet , 1986 .

[154]  W. Dickinson Interpreting Provenance Relations from Detrital Modes of Sandstones , 1985 .

[155]  J. Marcoux,et al.  Tectonic environment and geodynamic significance of the Neo-Cimmerian Donqiao ophiolite, Bangong-Nujiang suture zone, Tibet , 1984, Nature.

[156]  Wang Xibin,et al.  Structure and evolution of the Himalaya–Tibet orogenic belt , 1984, Nature.

[157]  P. Tapponnier,et al.  Deformation phases and tectonic evolution of the Lhasa block (southern Tibet, China) , 1983 .

[158]  R. Armijo,et al.  The Tibetan side of the India–Eurasia collision , 1981, Nature.

[159]  W. Dickinson,et al.  Petrologic Intervals and Petrofacies in the Great Valley Sequence, Sacramento Valley, California , 1972 .