Relativistic effects in heavy-element chemistry

The nature of relativistic effects in the electronic structure of atoms and molecules is explained and an account of theoretical methods for relativistic calculations in a quantum-mechanical framework is given. The focus is on the requirement of reducing the number of degrees of freedom in the theory in order to obtain computationally efficient and still highly accurate approximations. Some applications illustrating the relativistic effects in coinage metal atoms and molecules are discussed.

[1]  W. Kutzelnigg,et al.  Relativistic Hartree–Fock by means of stationary direct perturbation theory. I. General theory , 1995 .

[2]  H. Gollisch,et al.  Relativistic one-particle equation for electron states of heavy metals , 1978 .

[3]  H. Schwarz,et al.  Theory‐enforced Re‐investigation of the Origin of the Large Metal–Carbon Bond Strength in PdCH2I+ and its reactions with unsaturated hydrocarbons , 1996 .

[4]  G. E. Brown,et al.  On the interaction of two electrons , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[5]  B. Fricke Superheavy elements a prediction of their chemical and physical properties , 1975 .

[6]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations , 1984 .

[7]  O. Matsuoka,et al.  Relativistic self‐consistent‐field methods for molecules. I. Dirac–Fock multiconfiguration self‐consistent‐field theory for molecules and a single‐determinant Dirac–Fock self‐consistent‐field method for closed‐shell linear molecules , 1980 .

[8]  Kenneth S. Pitzer,et al.  RELATIVISTIC EFFECTS ON CHEMICAL PROPERTIES , 1979 .

[9]  B. A. Hess,et al.  Relativistic all-electron coupled-cluster calculations on the gold atom and gold hydride in the framework of the douglas-kroll transformation , 1994 .

[10]  W. Schwarz,et al.  Relativistic perturbation theory of chemical properties , 1990 .

[11]  Bertha Swirles,et al.  The Relativistic Self-Consistent Field , 1935 .

[12]  U. Wahlgren,et al.  NEW RELATIVISTIC EFFECTIVE CORE POTENTIALS FOR HEAVY ELEMENTS , 1995 .

[13]  P. Pyykkö Relativistic Theory of Atoms and Molecules III , 1986 .

[14]  P. Schleyer,et al.  Hypermetallation is ubiquitous: MX6 molecules (MCPb, XLiK) , 1996 .

[15]  B. A. Hess,et al.  The two-electron terms of the no-pair Hamiltonian , 1992 .

[16]  P. Dirac The quantum theory of the electron , 1928 .

[17]  P. Schwerdtfeger,et al.  Relativistic effects in gold chemistry. V. Group 11 dipole polarizabilities and weak bonding in monocarbonyl compounds , 1994 .

[18]  P. Pyykkoe Predicted Chemical Bonds between Rare Gases and Au , 1995 .

[19]  H. Ågren,et al.  Spin-catalysis phenomena , 1996 .

[20]  Marvin Douglas,et al.  Quantum electrodynamical corrections to the fine structure of helium , 1971 .

[21]  B. Fricke,et al.  Group 6 Dioxydichlorides MO2Cl2 (M = Cr, Mo, W, and Element 106, Sg): The Electronic Structure and Thermochemical Stability , 1996 .

[22]  P. Schwerdtfeger Relativistic and electron-correlation contributions in atomic and molecular properties: benchmark calculations on Au and Au2 , 1991 .

[23]  Pekka Pyykkö,et al.  Relativistic Quantum Chemistry , 1978 .

[24]  B. A. Hess,et al.  Large relativistic effects in molecular properties of the hydride of superheavy element 111 , 1996 .

[25]  A. Rutkowski Relativistic perturbation theory: II. One-electron variational perturbation calculations , 1986 .

[26]  H. Schwarz,et al.  UNPARALLELED, ENORMOUS METAL-CARBON BOND STRENGTH IN PDCH2I+ , 1996 .

[27]  E. Eliav,et al.  The relativistic four-component coupled cluster method for molecules: spectroscopic constants of SnH4 , 1996 .

[28]  J. Ladik The ground state of the hydrogen molecule on the basis of the relativistic quantum mechanics with the aid of the Wang wave function , 1959 .

[29]  W. C. Ermler,et al.  Relativistic Effects in Chemical Systems , 1985 .

[30]  R. C. Binning,et al.  Relativistic Gaussian basis set calculations on one-electron ions with a nucleus of finite extent , 1985 .

[31]  Michael Dolg,et al.  The accuracy of the pseudopotential approximation: non-frozen-core effects for spectroscopic constants of alkali fluorides XF (X = K, Rb, Cs) , 1996 .

[32]  COMMENTS ON THE TOPIC COMPUTATION OF LARGE MOLECULES , 1996 .

[33]  B. A. Hess,et al.  AB INITIO CALCULATION OF SPIN–ORBIT EFFECTS IN MOLECULES INCLUDING ELECTRON CORRELATION , 1995 .

[34]  J. Wood,et al.  Improved Pauli Hamiltonian for local-potential problems , 1978 .

[35]  L. Seijo Relativistic ab initio model potential calculations including spin–orbit effects through the Wood–Boring Hamiltonian , 1995 .

[36]  H. Schwarz,et al.  Pt+-mediated activation of methane: theory and experiment , 1995 .

[37]  Hess,et al.  Ground state electron configuration of element 111. , 1994, Physical review letters.

[38]  Peter Schwerdtfeger,et al.  Relativistic effects in gold chemistry. I. Diatomic gold compounds , 1989 .

[39]  Fully numerical relativistic calculations for diatomic molecules using the finite-element method. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[40]  W. C. Ermler,et al.  AB initio effective core potentials including relativistic effects. A procedure for the inclusion of spin-orbit coupling in molecular wavefunctions , 1981 .

[41]  J. Almlöf,et al.  TWO-ELECTRON RELATIVISTIC EFFECTS IN MOLECULES , 1994 .

[42]  I. Lindgren Relativistic many‐body and QED calculations on atomic systems , 1996 .

[43]  Bernd A. Hess,et al.  Revision of the Douglas-Kroll transformation. , 1989, Physical review. A, General physics.

[44]  U. Wahlgren,et al.  A new mean-field and ECP-based spin-orbit method. Applications to Pt and PtH , 1996 .

[45]  L. Foldy,et al.  On the Dirac Theory of Spin 1/2 Particles and Its Non-Relativistic Limit , 1950 .

[46]  Hess,et al.  Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators. , 1986, Physical review. A, General physics.

[47]  B. Fricke,et al.  Relativistic effects in physics and chemistry of element 105. I. Periodicities in properties of group 5 elements. Electronic structure of the pentachlorides , 1992 .

[48]  O. Haeberlen,et al.  Stability of Main-Group Element-Centered Gold Cluster Cations , 1994 .

[49]  I. Lindgren Many-Body Problems in Atomic Physics , 1992 .

[50]  W. Kutzelnigg Perturbation theory of relativistic corrections , 1990 .

[51]  A. Rutkowski Relativistic perturbation theory. I. A new perturbation approach to the Dirac equation , 1986 .

[52]  K. Dyall An exact separation of the spin‐free and spin‐dependent terms of the Dirac–Coulomb–Breit Hamiltonian , 1994 .

[53]  B. A. Hess,et al.  Can AuF be synthesized? A theoretical study using relativistic configuration interaction and plasma modeling techniques , 1994 .

[54]  E. Clementi,et al.  Relativistic effects on sixth group hydrides , 1994 .

[55]  N. Rösch,et al.  Relativistic linear combination of Gaussian-type orbitals density functional method based on a two-component formalism with external field projectors , 1990 .

[56]  L. Visscher,et al.  The electronic structure of the PtH molecule: Fully relativistic configuration interaction calculations of the ground and excited states , 1993 .

[57]  W. Kutzelnigg Perturbation theory of relativistic corrections , 1989 .

[58]  J. Desclaux A multiconfiguration relativistic DIRAC-FOCK program , 1984 .

[59]  K. Dyall Second-order Møller-Plesset perturbation theory for molecular Dirac-Hartree-Fock wavefunctions. Theory for up to two open-shell electrons , 1994 .

[60]  L. Wolniewicz,et al.  Accurate Adiabatic Treatment of the Ground State of the Hydrogen Molecule , 1964 .

[61]  H. Schaefer,et al.  Relativistic and correlation effects in CuH, AgH, and AuH: Comparison of various relativistic methods , 1995 .

[62]  J. B. Mann,et al.  Breit Interaction in Multielectron Atoms , 1971 .

[63]  Pekka Pyykkö,et al.  Relativity and the periodic system of elements , 1979 .

[64]  A. V. Yeremin,et al.  The new element 111 , 1995 .

[65]  H. Schwarz,et al.  Definitiver Beweis für die Existenz von AuF , 1994 .

[66]  Ian P. Grant,et al.  RELATIVISTIC CALCULATION OF ATOMIC STRUCTURES. , 1970 .

[67]  Christel M. Marian,et al.  A mean-field spin-orbit method applicable to correlated wavefunctions , 1996 .

[68]  W. C. Lineberger,et al.  Dye-laser photodetachment studies of Au−, Pt−, PtN−, and Ag− , 1973 .

[69]  Evert Jan Baerends,et al.  Relativistic regular two-component Hamiltonians. , 1996 .

[70]  Jean-Marc Lévy-Leblond,et al.  Nonrelativistic particles and wave equations , 1967 .

[71]  Peter Schwerdtfeger,et al.  Accuracy of energy-adjusted quasirelativistic ab initio pseudopotentials , 1993 .

[72]  M. Urban,et al.  Electric dipole polarizabilities of negative ions of the coinage metal atoms , 1996 .

[73]  F. A. Parpia,et al.  GRASP: A general-purpose relativistic atomic structure program , 1989 .

[74]  A. Rutkowski Relativistic perturbation theory. III. A new perturbation approach to the two-electron Dirac-Coulomb equation , 1986 .

[75]  Ian P. Grant,et al.  GRASP92: a package for large-scale relativistic atomic structure calculations , 1996 .

[76]  C. Marian On the dependence of correlation and relativity: The electron affinity of the copper atom , 1990 .

[77]  B. A. Hess,et al.  Relativistic effects on electric properties of many‐electron systems in spin‐averaged Douglas–Kroll and Pauli approximations , 1996 .

[78]  G. Soff,et al.  Electron excitations in superheavy quasimolecules , 1994 .

[79]  J. Kratz Chemie der schwersten Elemente , 1995 .

[80]  I. Grant Relativistic self-consistent fields , 1961, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[81]  D. C. Griffin,et al.  Approximate relativistic corrections to atomic radial wave functions , 1976 .

[82]  Christian F. Kunz,et al.  Ab initio study of the individual interaction energy components in the ground state of the mercury dimer , 1996 .

[83]  T. Kagawa Multiconfiguration relativistic Hartree-Fock-Roothaan theory for atomic systems , 1980 .

[84]  M. L. Nowlin,et al.  Improved spectroscopic constants for I2 D 1Σu , 1995 .

[85]  R. E. Moss,et al.  Approximate solution of the Dirac equation using the Foldy-Wouthuysen hamiltonian , 1980 .

[86]  T. Leininger,et al.  Comparison of the four widely used HF pseudopotentials: the group 1, 2 and 8 atoms , 1992 .

[87]  Pekka Pyykkö,et al.  Relativistic effects in structural chemistry , 1988 .

[88]  P. Taylor,et al.  All-electron molecular Dirac-Hartree-Fock calculations - The group IV tetrahydrides CH4, SiH4, GeH4, SnH4, and PbH4 , 1991 .

[89]  Ph. Durand,et al.  Regular Two-Component Pauli-Like Effective Hamiltonians in Dirac Theory , 1986 .

[90]  K. Balasubramanian Chapter 119 Relativistic effects and electronic structure of lanthanide and actinide molecules , 1994 .

[91]  K. Koc,et al.  Relativistic many-body calculations of ionisation energies and fine-structure intervals in Ag and Au atoms , 1990 .

[92]  Y. Ishikawa,et al.  Open-shell relativistic coupled-cluster method with Dirac-Fock-Breit wave functions: Energies of the gold atom and its cation. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[93]  A. Yeremin,et al.  Production and decay of269110 , 1995 .

[94]  B. A. Hess,et al.  Ionization potential and electron affinity of the Au atom and the AuH molecule by all‐electron relativistic configuration interaction and propagator techniques , 1993 .

[95]  J. G. Snijders,et al.  The origin of relativistic effects of atomic orbitals , 1989 .

[96]  H. Schnering,et al.  Molekulares Quecksilber(IV)-fluorid, HgF4: eine ab-initio-Untersuchung† , 1993 .

[97]  J. G. Snijders,et al.  EXACT SOLUTIONS OF REGULAR APPROXIMATE RELATIVISTIC WAVE EQUATIONS FOR HYDROGEN-LIKE ATOMS , 1994 .

[98]  K. Dyall,et al.  Relativistic four‐component multiconfigurational self‐consistent‐field theory for molecules: Formalism , 1996 .

[99]  M. Schädel Chemistry of the Transactinide Elements , 1995 .