Chordin is required for neural but not axial development in sea urchin embryos.

[1]  François Lapraz,et al.  Cis-regulatory analysis of nodal and maternal control of dorsal-ventral axis formation by Univin, a TGF-β related to Vg1 , 2007, Development.

[2]  Eric H Davidson,et al.  Cis‐regulatory control of the nodal gene, initiator of the sea urchin oral ectoderm gene network , 2007, Developmental biology.

[3]  H. Lehrach,et al.  A global view of gene expression in lithium and zinc treated sea urchin embryos: new components of gene regulatory networks , 2007, Genome Biology.

[4]  D. McClay,et al.  Secondary axis specification in sea urchin embryos , 2007 .

[5]  Junko Yaguchi,et al.  Sp-Smad2/3 mediates patterning of neurogenic ectoderm by nodal in the sea urchin embryo. , 2007, Developmental biology.

[6]  D. McClay,et al.  RTK and TGF-β signaling pathways genes in the sea urchin genome , 2006 .

[7]  S. Hussain,et al.  Sea urchin metalloproteases: a genomic survey of the BMP-1/tolloid-like, MMP and ADAM families. , 2006, Developmental biology.

[8]  Wendy S. Beane,et al.  The sea urchin kinome: a first look. , 2006, Developmental biology.

[9]  R. Angerer,et al.  A database of mRNA expression patterns for the sea urchin embryo. , 2006, Developmental biology.

[10]  Eric H Davidson,et al.  The Transcriptome of the Sea Urchin Embryo , 2006, Science.

[11]  Andrew R. Jackson,et al.  The Genome of the Sea Urchin Strongylocentrotus purpuratus , 2006, Science.

[12]  Eric H Davidson,et al.  Repression of mesodermal fate by foxa, a key endoderm regulator of the sea urchin embryo , 2006, Development.

[13]  M. Fürthauer,et al.  Noggin1 and Follistatin-like2 function redundantly to Chordin to antagonize BMP activity. , 2006, Developmental biology.

[14]  Shawn C. Little,et al.  Extracellular modulation of BMP activity in patterning the dorsoventral axis. , 2006, Birth defects research. Part C, Embryo today : reviews.

[15]  T. Holstein,et al.  Asymmetric expression of the BMP antagonists chordin and gremlin in the sea anemone Nematostella vectensis: implications for the evolution of axial patterning. , 2006, Developmental biology.

[16]  Shuji Takahashi,et al.  Two distinct domains in pro-region of Nodal-related 3 are essential for BMP inhibition. , 2006, Biochemical and biophysical research communications.

[17]  S. Yaguchi,et al.  Specification of ectoderm restricts the size of the animal plate and patterns neurogenesis in sea urchin embryos , 2006, Development.

[18]  Diana Wang,et al.  Neuron‐specific expression of a synaptotagmin gene in the sea urchin Strongylocentrotus purpuratus , 2006, The Journal of comparative neurology.

[19]  D. McClay,et al.  p38 MAPK is essential for secondary axis specification and patterning in sea urchin embryos , 2006, Development.

[20]  H. Othmer,et al.  Facilitated Transport of a Dpp/Scw Heterodimer by Sog/Tsg Leads to Robust Patterning of the Drosophila Blastoderm Embryo , 2005, Cell.

[21]  Yu-Chiun Wang,et al.  Spatial bistability of Dpp–receptor interactions during Drosophila dorsal–ventral patterning , 2005, Nature.

[22]  M. Khokha,et al.  Depletion of three BMP antagonists from Spemann's organizer leads to a catastrophic loss of dorsal structures. , 2005, Developmental cell.

[23]  C. Dahmann,et al.  The role of Dpp signaling in maintaining the Drosophila anteroposterior compartment boundary. , 2005, Developmental biology.

[24]  Albert J Poustka,et al.  Nodal/activin signaling establishes oral–aboral polarity in the early sea urchin embryo , 2004, Developmental dynamics : an official publication of the American Association of Anatomists.

[25]  Eric H Davidson,et al.  Expression patterns of four different regulatory genes that function during sea urchin development. , 2004, Gene expression patterns : GEP.

[26]  H. Lehrach,et al.  On the origin of the chordate central nervous system: expression of onecut in the sea urchin embryo , 2004, Evolution & development.

[27]  E. Robertis,et al.  Neural Induction in Xenopus: Requirement for Ectodermal and Endomesodermal Signals via Chordin, Noggin, β-Catenin, and Cerberus , 2004, PLoS biology.

[28]  P. Oliveri,et al.  Expression of an NK2 homeodomain gene in the apical ectoderm defines a new territory in the early sea urchin embryo. , 2004, Developmental biology.

[29]  T. Lepage,et al.  Nodal and BMP2/4 signaling organizes the oral-aboral axis of the sea urchin embryo. , 2004, Developmental cell.

[30]  H. Kaneko,et al.  Divergent patterns of neural development in larval echinoids and asteroids , 2004, Evolution & development.

[31]  Ralf Herwig,et al.  Generation, annotation, evolutionary analysis, and database integration of 20,000 unique sea urchin EST clusters. , 2003, Genome research.

[32]  O. Shimmi,et al.  Physical properties of Tld, Sog, Tsg and Dpp protein interactions are predicted to help create a sharp boundary in Bmp signals during dorsoventral patterning of the Drosophila embryo , 2003, Development.

[33]  Eric H Davidson,et al.  Spdeadringer, a sea urchin embryo gene required separately in skeletogenic and oral ectoderm gene regulatory networks. , 2003, Developmental biology.

[34]  Ryan M. Anderson,et al.  The role of chordin/Bmp signals in mammalian pharyngeal development and DiGeorge syndrome , 2003, Development.

[35]  Jenifer C. Croce,et al.  Coquillette, a sea urchin T-box gene of the Tbx2 subfamily, is expressed asymmetrically along the oral–aboral axis of the embryo and is involved in skeletogenesis , 2003, Mechanisms of Development.

[36]  D. McClay,et al.  LvTbx2/3: a T-box family transcription factor involved in formation of the oral/aboral axis of the sea urchin embryo , 2003, Development.

[37]  E. D. De Robertis,et al.  Chordin is required for the Spemann organizer transplantation phenomenon in Xenopus embryos. , 2003, Developmental cell.

[38]  L. Hood,et al.  A Genomic Regulatory Network for Development , 2002, Science.

[39]  T. Ishii,et al.  Integrin-linked Kinase Controls Neurite Outgrowth in N1E-115 Neuroblastoma Cells* , 2001, The Journal of Biological Chemistry.

[40]  R. Angerer,et al.  Sea urchin goosecoid function links fate specification along the animal-vegetal and oral-aboral embryonic axes. , 2001, Development.

[41]  Y. Oh,et al.  Overexpression of calbindin-D28K induces neurite outgrowth in dopaminergic neuronal cells via activation of p38 MAPK. , 2001, Biochemical and biophysical research communications.

[42]  M. Whitman,et al.  Nodal signals to Smads through Cripto-dependent and Cripto-independent mechanisms. , 2001, Molecular cell.

[43]  J. Rehfeld,et al.  Cyclic AMP‐Induced Neuronal Differentiation via Activation of p38 Mitogen‐Activated Protein Kinase , 2000, Journal of neurochemistry.

[44]  C. Tabin,et al.  Roles of BMP signaling and Nkx2.5 in patterning at the chick midgut-foregut boundary. , 2000, Development.

[45]  H. Ichijo,et al.  Apoptosis Signal-regulating Kinase 1 (ASK1) Induces Neuronal Differentiation and Survival of PC12 Cells* , 2000, The Journal of Biological Chemistry.

[46]  D. McClay,et al.  A BMP pathway regulates cell fate allocation along the sea urchin animal-vegetal embryonic axis. , 2000, Development.

[47]  Ryan M. Anderson,et al.  The organizer factors Chordin and Noggin are required for mouse forebrain development , 2000, Nature.

[48]  M. Kohno,et al.  Specific Activation of the p38 Mitogen-activated Protein Kinase Signaling Pathway and Induction of Neurite Outgrowth in PC12 Cells by Bone Morphogenetic Protein-2* , 1999, The Journal of Biological Chemistry.

[49]  E. Nishida,et al.  Requirement of p38 Mitogen-activated Protein Kinase for Neuronal Differentiation in PC12 Cells* , 1998, The Journal of Biological Chemistry.

[50]  H. Uchiyama,et al.  Direct binding of follistatin to a complex of bone-morphogenetic protein and its receptor inhibits ventral and epidermal cell fates in early Xenopus embryo. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Leslie Dale,et al.  Cleavage of Chordin by Xolloid Metalloprotease Suggests a Role for Proteolytic Processing in the Regulation of Spemann Organizer Activity , 1997, Cell.

[52]  William C. Smith,et al.  Direct neural induction and selective inhibition of mesoderm and epidermis inducers by Xnr3. , 1997, Development.

[53]  D A Kane,et al.  dino and mercedes, two genes regulating dorsal development in the zebrafish embryo. , 1996, Development.

[54]  A. McMahon,et al.  Genetic analysis of dorsoventral pattern formation in the zebrafish: requirement of a BMP-like ventralizing activity and its dorsal repressor. , 1996, Genes & development.

[55]  R. Harland,et al.  The Spemann Organizer Signal noggin Binds and Inactivates Bone Morphogenetic Protein 4 , 1996, Cell.

[56]  Y. Sasai,et al.  Dorsoventral Patterning in Xenopus: Inhibition of Ventral Signals by Direct Binding of Chordin to BMP-4 , 1996, Cell.

[57]  Y. Sasai,et al.  Regulation of neural induction by the Chd and Bmp-4 antagonistic patterning signals in Xenopus , 1995, Nature.

[58]  Yoshiki Sasai,et al.  A conserved system for dorsal-ventral patterning in insects and vertebrates involving sog and chordin , 1995, Nature.

[59]  Y. Sasai,et al.  Xenopus chordin: A novel dorsalizing factor activated by organizer-specific homeobox genes , 1994, Cell.

[60]  J. Emery,et al.  Dorsal-ventral patterning of the Drosophila embryo depends on a putative negative growth factor encoded by the short gastrulation gene. , 1994, Genes & development.

[61]  R. Philipsen,et al.  Morphometric analysis of cisplatin-induced neurite outgrowth in N1E-115 neuroblastoma cells , 1994, Neuroscience Letters.

[62]  D. Melton,et al.  Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity , 1994, Cell.

[63]  W. Lennarz,et al.  Characterization of a homolog of human bone morphogenetic protein 1 in the embryo of the sea urchin, Strongylocentrotus purpuratus. , 1994, Development.

[64]  R. Britten,et al.  The embryonic ciliated band of the sea urchin, Strongylocentrotus purpuratus derives from both oral and aboral ectoderm. , 1993, Developmental biology.

[65]  D. McClay,et al.  Commitment along the dorsoventral axis of the sea urchin embryo is altered in response to NiCl2. , 1992, Development.

[66]  William C. Smith,et al.  Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos , 1992, Cell.

[67]  K. Anderson,et al.  Localized enhancement and repression of the activity of the TGF-beta family member, decapentaplegic, is necessary for dorsal-ventral pattern formation in the Drosophila embryo. , 1992, Development.

[68]  J. Palis,et al.  Early mRNAs, spatially restricted along the animal-vegetal axis of sea urchin embryos, include one encoding a protein related to tolloid and BMP-1. , 1992, Development.

[69]  W. Gelbart,et al.  Wing formation in Drosophila melanogaster requires decapentaplegic gene function along the anterior-posterior compartment boundary , 1990, Mechanisms of Development.

[70]  F. Hoffmann,et al.  Pattern-specific expression of the Drosophila decapentaplegic gene in imaginal disks is regulated by 3' cis-regulatory elements. , 1990, Genes & development.

[71]  S. Yaguchi,et al.  A Wnt-FoxQ2-nodal pathway links primary and secondary axis specification in sea urchin embryos. , 2008, Developmental cell.

[72]  Shuji Takahashi,et al.  Xenopus tropicalis nodal-related gene 3 regulates BMP signaling: an essential role for the pro-region. , 2004, Developmental biology.

[73]  T. Lepage,et al.  Spatial and temporal expression pattern during sea urchin embryogenesis of a gene coding for a protease homologous to the human protein BMP-1 and to the product of the Drosophila dorsal-ventral patterning gene tolloid. , 1992, Development.