Pitfalls to Avoid when Interpreting Machine Learning Models

Modern requirements for machine learning (ML) models include both high predictive performance and model interpretability. A growing number of techniques provide model interpretations, but can lead to wrong conclusions if applied incorrectly. We illustrate pitfalls of ML model interpretation such as bad model generalization, dependent features, feature interactions or unjustified causal interpretations. Our paper addresses ML practitioners by raising awareness of pitfalls and pointing out solutions for correct model interpretation, as well as ML researchers by discussing open issues for further research.

[1]  Brandon M. Greenwell pdp: An R Package for Constructing Partial Dependence Plots , 2017, R J..

[2]  Yoshua Bengio,et al.  Mutual Information Neural Estimation , 2018, ICML.

[3]  Qiuyan Yu,et al.  Toward Operational Mapping of Woody Canopy Cover in Tropical Savannas Using Google Earth Engine , 2020, Frontiers in Environmental Science.

[4]  David S. Watson,et al.  Testing conditional independence in supervised learning algorithms , 2019, Machine Learning.

[5]  Bernhard Schölkopf,et al.  Elements of Causal Inference: Foundations and Learning Algorithms , 2017 .

[6]  Matthew Britton,et al.  VINE: Visualizing Statistical Interactions in Black Box Models , 2019, ArXiv.

[7]  Been Kim,et al.  Towards A Rigorous Science of Interpretable Machine Learning , 2017, 1702.08608.

[8]  Thorsten Dickhaus,et al.  Simultaneous Statistical Inference , 2014, Springer Berlin Heidelberg.

[9]  Bernd Bischl,et al.  Multi-Objective Counterfactual Explanations , 2020, PPSN.

[10]  Bernhard Schölkopf,et al.  Algorithmic Recourse: from Counterfactual Explanations to Interventions , 2020, ArXiv.

[11]  Tonio Ball,et al.  Causal interpretation rules for encoding and decoding models in neuroimaging , 2015, NeuroImage.

[12]  Bernd Bischl,et al.  Resampling Methods for Meta-Model Validation with Recommendations for Evolutionary Computation , 2012, Evolutionary Computation.

[13]  Bernhard Schölkopf,et al.  The Randomized Dependence Coefficient , 2013, NIPS.

[14]  Evangelos Spiliotis,et al.  Statistical and Machine Learning forecasting methods: Concerns and ways forward , 2018, PloS one.

[15]  G. Hooker Generalized Functional ANOVA Diagnostics for High-Dimensional Functions of Dependent Variables , 2007 .

[16]  Bernd Bischl,et al.  Model-agnostic Feature Importance and Effects with Dependent Features - A Conditional Subgroup Approach , 2020, ArXiv.

[17]  Yan Li,et al.  Estimation of Mutual Information: A Survey , 2009, RSKT.

[18]  Mukund Sundararajan,et al.  The many Shapley values for model explanation , 2019, ICML.

[19]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[20]  Nils Lid Hjort,et al.  Model Selection and Model Averaging , 2001 .

[21]  Carlos Guestrin,et al.  "Why Should I Trust You?": Explaining the Predictions of Any Classifier , 2016, ArXiv.

[22]  Mariana Recamonde-Mendoza,et al.  How to make more from exposure data? An integrated machine learning pipeline to predict pathogen exposure , 2019, bioRxiv.

[23]  Thomas Lengauer,et al.  Permutation importance: a corrected feature importance measure , 2010, Bioinform..

[24]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[25]  J. Freidman,et al.  Multivariate adaptive regression splines , 1991 .

[26]  Ludwig Fahrmeir,et al.  Regression: Models, Methods and Applications , 2013 .

[27]  Lucas Janson,et al.  Panning for gold: ‘model‐X’ knockoffs for high dimensional controlled variable selection , 2016, 1610.02351.

[28]  Bernd Bischl,et al.  Quantifying Model Complexity via Functional Decomposition for Better Post-hoc Interpretability , 2019, PKDD/ECML Workshops.

[29]  Mohsen Shahhosseini,et al.  Forecasting Corn Yield With Machine Learning Ensembles , 2020, Frontiers in Plant Science.

[30]  Achim Zeileis,et al.  BMC Bioinformatics BioMed Central Methodology article Conditional variable importance for random forests , 2008 .

[31]  Yufang Jin,et al.  California Almond Yield Prediction at the Orchard Level With a Machine Learning Approach , 2019, Front. Plant Sci..

[32]  Maya Krishnan,et al.  Against Interpretability: a Critical Examination of the Interpretability Problem in Machine Learning , 2019, Philosophy & Technology.

[33]  Sylvain Arlot,et al.  A survey of cross-validation procedures for model selection , 2009, 0907.4728.

[34]  Johan A. K. Suykens,et al.  Benchmarking state-of-the-art classification algorithms for credit scoring , 2003, J. Oper. Res. Soc..

[35]  Patrick Hall,et al.  On the Art and Science of Machine Learning Explanations , 2018, ArXiv.

[36]  George W. Fitzmaurice,et al.  Same Stats, Different Graphs: Generating Datasets with Varied Appearance and Identical Statistics through Simulated Annealing , 2017, CHI.

[37]  Scott M. Lundberg,et al.  Consistent Individualized Feature Attribution for Tree Ensembles , 2018, ArXiv.

[38]  Cynthia Rudin,et al.  Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead , 2018, Nature Machine Intelligence.

[39]  Chris Russell,et al.  Counterfactual Explanations Without Opening the Black Box: Automated Decisions and the GDPR , 2017, ArXiv.

[40]  Harry J. Khamis,et al.  Measures of Association: How to Choose? , 2008 .

[41]  Bogdan E. Popescu,et al.  PREDICTIVE LEARNING VIA RULE ENSEMBLES , 2008, 0811.1679.

[42]  D. Tjøstheim,et al.  Statistical Dependence: Beyond Pearson’s ρ , 2018, Statistical Science.

[43]  Bernd Bischl,et al.  Behavioral Patterns in Smartphone Data Predict Big Five Personality Traits , 2018 .

[44]  Hadi Fanaee-T,et al.  Event labeling combining ensemble detectors and background knowledge , 2014, Progress in Artificial Intelligence.

[45]  Bernd Bischl,et al.  Sampling, Intervention, Prediction, Aggregation: A Generalized Framework for Model Agnostic Interpretations , 2019, PKDD/ECML Workshops.

[46]  N. Gogtay,et al.  Measures of Association. , 2016, The Journal of the Association of Physicians of India.

[47]  Bernd Bischl,et al.  iml: An R package for Interpretable Machine Learning , 2018, J. Open Source Softw..

[48]  T. Perneger What's wrong with Bonferroni adjustments , 1998, BMJ.

[49]  Senén Barro,et al.  Do we need hundreds of classifiers to solve real world classification problems? , 2014, J. Mach. Learn. Res..

[50]  S. Holm A Simple Sequentially Rejective Multiple Test Procedure , 1979 .

[51]  Michael Mitzenmacher,et al.  Detecting Novel Associations in Large Data Sets , 2011, Science.

[52]  Ruggiero Lovreglio,et al.  Modelling and interpreting pre-evacuation decision-making using machine learning , 2020 .

[53]  Cynthia Rudin,et al.  All Models are Wrong, but Many are Useful: Learning a Variable's Importance by Studying an Entire Class of Prediction Models Simultaneously , 2019, J. Mach. Learn. Res..

[54]  Giles Hooker,et al.  Discovering additive structure in black box functions , 2004, KDD.

[55]  Bernhard Schölkopf,et al.  Measuring Statistical Dependence with Hilbert-Schmidt Norms , 2005, ALT.

[56]  Dominik Janzing,et al.  Feature relevance quantification in explainable AI: A causality problem , 2019, AISTATS.

[57]  Richard Simon,et al.  Resampling Strategies for Model Assessment and Selection , 2007 .

[58]  Kurt Hornik,et al.  Measuring the Stability of Results From Supervised Statistical Learning , 2018, Journal of Computational and Graphical Statistics.

[59]  Giles Hooker,et al.  Please Stop Permuting Features: An Explanation and Alternatives , 2019, ArXiv.

[60]  Hugo F. Posada-Quintero,et al.  Analysis of Risk Factors and Symptoms of Burnout Syndrome in Colombian School Teachers under Statutes 2277 and 1278 Using Machine Learning Interpretation , 2020 .

[61]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[62]  Emil Pitkin,et al.  Peeking Inside the Black Box: Visualizing Statistical Learning With Plots of Individual Conditional Expectation , 2013, 1309.6392.

[63]  Zachary Chase Lipton The mythos of model interpretability , 2016, ACM Queue.

[64]  Lloyd S. Nelson,et al.  Common Errors in Statistics (and How to Avoid Them) , 2005 .

[65]  Maria L. Rizzo,et al.  Measuring and testing dependence by correlation of distances , 2007, 0803.4101.

[66]  K. S. Joseph,et al.  Comparison of logistic regression with machine learning methods for the prediction of fetal growth abnormalities: a retrospective cohort study , 2018, BMC Pregnancy and Childbirth.

[67]  Trevor Hastie,et al.  Causal Interpretations of Black-Box Models , 2019, Journal of business & economic statistics : a publication of the American Statistical Association.

[68]  J. Friedman,et al.  Estimating Optimal Transformations for Multiple Regression and Correlation. , 1985 .

[69]  Shai Ben-David,et al.  Understanding Machine Learning: From Theory to Algorithms , 2014 .

[70]  O. J. Dunn Multiple Comparisons among Means , 1961 .

[71]  Daniel W. Apley,et al.  Visualizing the effects of predictor variables in black box supervised learning models , 2016, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[72]  Michael I. Jordan,et al.  Kernel independent component analysis , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[73]  Brandon M. Greenwell,et al.  A Simple and Effective Model-Based Variable Importance Measure , 2018, ArXiv.

[74]  Bernd Bischl,et al.  Visualizing the Feature Importance for Black Box Models , 2018, ECML/PKDD.

[75]  Jason Roy,et al.  Prediction Modeling Using EHR Data: Challenges, Strategies, and a Comparison of Machine Learning Approaches , 2010, Medical care.