Multi-objective Particle Swarm Optimization Hybrid Algorithm: An Application on Industrial Cracking Furnace

In this paper, a new multi-objective particle swarm optimization (MOPSO) procedure, based on the Pareto dominance hybrid algorithm, is proposed and applied in a naphtha industrial cracking furnace for the first time. Pareto dominance is incorporated into particle swarm optimization (PSO). Our algorithm takes the Pareto set as a repository of particles that is later used by other particles to guide their own flight. In addition, an MOPSO and artificial neural network (ANN) hybrid model is applied in the operation optimization of a naphtha industrial cracking furnace. Therein, sensitivity analysis is investigated and taken as the basis on which decision variables of multi-objective problem base. From both theoretical computation and practical application, the validity and reliability of proposed algorithm are verified by two test functions studied, and actual application example of the optimization of operation parameter of cracking process. Moreover, the yields of ethylene and propylene are improved.