Retrieval of Cloud Microphysical Properties from MODIS and AIRS
暂无分享,去创建一个
W. Paul Menzel | Timothy J. Schmit | Hung-Lung Huang | Chian-Yi Liu | Ping Yang | Heli Wei | Elisabeth Weisz | Jun Li | W. Menzel | T. Schmit | P. Yang | Heli Wei | Hung-Lung Huang | E. Weisz | Jun Li | Chian‐Yi Liu | L. Guan | Li Guan | W. Menzel
[1] W. Paul Menzel,et al. A comparison of cloud top heights computed from airborne lidar and MAS radiance data using CO2 slicing , 1999 .
[2] Tristan S. L'Ecuyer,et al. The impact of explicit cloud boundary information on ice cloud microphysical property retrievals from infrared radiances , 2003 .
[3] W. Paul Menzel,et al. Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS) , 1992, IEEE Trans. Geosci. Remote. Sens..
[4] M. King,et al. Determination of the optical thickness and effective particle radius of clouds from reflected solar , 1990 .
[5] Bryan A. Baum,et al. Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS: 1. Data and models , 2000 .
[6] Liam E. Gumley,et al. International MODIS and AIRS Processing Package (IMAPP): A Direct Broadcast Software Package for the NASA Earth Observing System , 2004 .
[7] Larrabee L. Strow,et al. An overview of the AIRS radiative transfer model , 2003, IEEE Trans. Geosci. Remote. Sens..
[8] Steven A. Ackerman,et al. Inference of ice cloud properties from high spectral resolution infrared observations , 2004, IEEE Transactions on Geoscience and Remote Sensing.
[9] Kathleen I. Strabala,et al. Seasonal and Diurnal Changes in Cirrus Clouds as Seen in Four Years of Observations with the VAS , 1992 .
[10] Steven A. Ackerman,et al. Remote sensing cloud properties from high spectral resolution infrared observations , 1993 .
[11] W. Paul Menzel,et al. INTRODUCING THE NEXT-GENERATION ADVANCED BASELINE IMAGER ON GOES-R , 2005 .
[12] W. Menzel,et al. AIRS Subpixel Cloud Characterization Using MODIS Cloud Products , 2004 .
[13] W. Paul Menzel,et al. Cloud Properties inferred from 812-µm Data , 1994 .
[14] Ping Yanga,et al. Radiative properties of cirrus clouds in the infrared (8–13 m) spectral region , 2001 .
[15] Robert M. Aune,et al. NWP Cloud Initialization Using GOES Sounder Data and Improved Modeling of Nonprecipitating Clouds , 2000 .
[16] W. Menzel,et al. Discriminating clear sky from clouds with MODIS , 1998 .
[17] Bryan A. Baum,et al. Single scattering properties of droxtals , 2003 .
[18] K. Stamnes,et al. Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. , 1988, Applied optics.
[19] Patrick Minnis,et al. Inference of cirrus cloud properties using satellite-observed visible and infrared radiances. Part I: parameterization of radiance fields , 1993 .
[20] Timothy J. Schmit,et al. Baseline instruments planned for the GOES-R series , 2004, SPIE Optics + Photonics.
[21] Patrick Minnis,et al. Inference of Cirrus Cloud Properties Using Satellite-observed Visible and Infrared Radiances. Part II: Verification of Theoretical Cirrus Radiative Properties , 1993 .
[22] Andrew K. Heidinger,et al. Rapid Daytime Estimation of Cloud Properties over a Large Area from Radiance Distributions , 2003 .
[23] W. Paul Menzel,et al. High-Spatial-Resolution Surface and Cloud-Type Classification from MODIS Multispectral Band Measurements , 2003 .
[24] Christopher D. Barnet,et al. Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds , 2003, IEEE Trans. Geosci. Remote. Sens..
[25] W. Paul Menzel,et al. The MODIS cloud products: algorithms and examples from Terra , 2003, IEEE Trans. Geosci. Remote. Sens..
[26] L. Larrabee Strow,et al. Atmospheric infrared fast transmittance models: a comparison of two approaches , 1996, Optics + Photonics.
[27] M. King,et al. Determination of the Optical Thickness and Effective Particle Radius of Clouds from Reflected Solar Radiation Measurements. Part II: Marine Stratocumulus Observations , 1991 .
[28] Shepard A. Clough,et al. Near micron‐sized cirrus cloud particles in high‐resolution infrared spectra: An orographic case study , 2003 .
[29] Paul W. Stackhouse,et al. The Relevance of the Microphysical and Radiative Properties of Cirrus Clouds to Climate and Climatic Feedback , 1990 .
[30] W. Paul Menzel,et al. Synergistic Use of MODIS and AIRS in a Variational Retrieval of Cloud Parameters , 2004 .
[31] Peter J. Webster,et al. Clouds and Climate: Sensitivity of Simple Systems. , 1981 .
[32] Ben J Hicks,et al. SPIE - The International Society for Optical Engineering , 2001 .
[33] J. R. Eyre,et al. Inversion of cloudy satellite sounding radiances by nonlinear optimal estimation. I: Theory and simulation for TOVS , 1989 .
[34] Steven Platnick,et al. Retrieval of semitransparent ice cloud optical thickness from atmospheric infrared sounder (AIRS) measurements , 2004, IEEE Transactions on Geoscience and Remote Sensing.
[35] Michael D. King,et al. Remote sensing of cirrus cloud parameters based on a 0.63‐3.7 µm radiance correlation technique applied to AVHRR data , 1999 .
[36] William L. Smith,et al. AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems , 2003, IEEE Trans. Geosci. Remote. Sens..
[37] W. Paul Menzel,et al. Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS , 2003, IEEE Trans. Geosci. Remote. Sens..
[38] John M. Norman,et al. Agricultural Management Decision Aids Driven by Real-Time Satellite Data , 1998 .
[39] Clive D Rodgers,et al. Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .