Optimal Deterministic Transfer Function Modelling in the Presence of Serially Correlated Noise

This article addresses the development of predictive transfer function models for nonlinear dynamic processes under serially correlated model error. This work is presented in the context of the block-oriented exact solution technique (BEST) for multiple input, multiple output (MIMO) processes proposed by Bhandari and Rollins (2003) for continuous-time modelling and Rollins and Bhandari (2004) for constrained discrete-time modelling. This work proposes a model building methodology that is able to separately determine the steady state, dynamic and noise model structures. It includes a pre-whitening procedure that is affective for the general class of discrete ARMA(p, q) noise (Box and Jenkins, 1976). The proposed method is demonstrated using a simulated physical system and a real physical system.

[1]  O. Nelles Nonlinear System Identification , 2001 .

[2]  Janos Gertler,et al.  Noise-induced bias in last principal component modeling of linear system , 2004 .

[3]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1972 .

[4]  Yucai Zhu,et al.  Estimation of an N-L-N Hammerstein-Wiener model , 2002, Autom..

[5]  M. Verhaegen,et al.  Identifying MIMO Wiener systems using subspace model identification methods , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[6]  Ronald K. Pearson,et al.  Nonlinear process identification , 1997 .

[7]  W. R. Cluett,et al.  Identification of Wiener-type nonlinear systems in a noisy environment , 1997 .

[8]  George E. P. Box,et al.  Time Series Analysis: Forecasting and Control , 1977 .

[9]  W. Greblicki Nonparametric identification of Wiener systems by orthogonal series , 1994, IEEE Trans. Autom. Control..

[10]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1971 .

[11]  Derrick K. Rollins,et al.  Continuous-Time Multiple-Input, Multiple-Output Wiener Modeling Method , 2003 .

[12]  R. Luus,et al.  Nonlinear identification in the presence of correlated noise using a Hammerstein model , 1973 .

[13]  G. M. Colver,et al.  A continuous-time nonlinear dynamic predictive modeling method for Hammerstein processes , 2003 .

[14]  Gail D. Baura,et al.  Nonlinear System Identification , 2002 .

[15]  Derrick K. Rollins,et al.  Accurate Identification of Biased Measurements Under Serial Correlation , 2000 .

[16]  Derrick K. Rollins,et al.  Constrained MIMO dynamic discrete-time modeling exploiting optimal experimental design , 2004 .

[17]  Dale E. Seborg,et al.  Nonlinear Process Control , 1996 .

[18]  Georges Bastin,et al.  An estimator of the inverse covariance matrix and its application to ML parameter estimation in dynamical systems , 2001, Autom..

[19]  C. H. Chen,et al.  Maximum likelihood identification of stochastic Weiner-Hammerstein-type non-linear systems , 1992 .

[20]  E. Bai An optimal two stage identification algorithm for Hammerstein-Wiener nonlinear systems , 1998 .

[21]  L. Ljung,et al.  Maximum likelihood estimation of Wiener models , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[22]  Anna Hagenblad,et al.  Aspects of the Identification of Wiener Models , 1999 .

[23]  Michel Verhaegen,et al.  Identifying MIMO Wiener systems using subspace model identification methods , 1996, Signal Process..

[24]  Torbjörn Wigren,et al.  Recursive prediction error identification using the nonlinear wiener model , 1993, Autom..

[25]  Enrique Baeyens,et al.  Identification of block-oriented nonlinear systems using orthonormal bases , 2004 .

[26]  Er-Wei Bai An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems , 1998, Autom..