Matrix manifolds and the Jordan structure of the bialternate matrix product
暂无分享,去创建一个
[1] W. Govaerts. Defining functions for manifolds of matrices , 1997 .
[2] J. Guckenheimer,et al. Defining Functions for Multiple Hopf Bifurcations , 1997 .
[3] Peter Lancaster,et al. The theory of matrices , 1969 .
[4] P. Holmes,et al. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.
[5] A. Griewank,et al. Computation of cusp singularities for operator equations and their discretizations , 1989 .
[6] J. Guckenheimer,et al. Computing Hopf Bifurcations I , 1997 .
[7] A. Griewank,et al. Characterization and Computation of Generalized Turning Points , 1984 .
[8] William C. Waterhouse. The codimension of singular matrix pairs , 1984 .
[9] John Guckenheimer,et al. Computing Hopf Bifurcations. II: Three Examples From Neurophysiology , 1996, SIAM J. Sci. Comput..
[10] Y. Kuznetsov. Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.
[11] Willy Govaerts,et al. Continuation of Codimension-2 Equilibrium Bifurcations in Content , 2000 .
[12] V. Arnold. ON MATRICES DEPENDING ON PARAMETERS , 1971 .
[13] I. G. MacDonald,et al. Symmetric functions and Hall polynomials , 1979 .
[14] Gene H. Golub,et al. Matrix computations , 1983 .
[15] Alan Edelman,et al. The dimension of matrices (matrix pencils) with given Jordan (Kronecker) canonical forms , 1995 .
[16] A. Fuller,et al. Conditions for a matrix to have only characteristic roots with negative real parts , 1968 .