Controllability and reachability criteria for switched linear systems

Complete geometric criteria are presented for controllability and reachability of switched linear systems

[1]  A. Michel,et al.  Stability theory for hybrid dynamical systems , 1998, IEEE Trans. Autom. Control..

[2]  D. Stanford,et al.  Controllability and Stabilizability in Multi-Pair Systems , 1980 .

[3]  Shuzhi Sam Ge,et al.  Reachability and controllability of switched linear discrete-time systems , 2001, IEEE Trans. Autom. Control..

[4]  W. Wonham Linear Multivariable Control: A Geometric Approach , 1974 .

[5]  Clyde F. Martin,et al.  A Converse Lyapunov Theorem for a Class of Dynamical Systems which Undergo Switching , 1999, IEEE Transactions on Automatic Control.

[6]  F. Szigeti,et al.  A differential-algebraic condition for controllability and observability of time varying linear systems , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[7]  Raymond A. DeCarlo,et al.  Switched Controller Synthesis for the Quadratic Stabilisation of a Pair of Unstable Linear Systems , 1998, Eur. J. Control.

[8]  John N. Tsitsiklis,et al.  Complexity of stability and controllability of elementary hybrid systems , 1999, Autom..

[9]  A. Haddad,et al.  On the Controllability and Observability of Hybrid Systems , 1988, 1988 American Control Conference.

[10]  M. Branicky Multiple Lyapunov functions and other analysis tools for switched and hybrid systems , 1998, IEEE Trans. Autom. Control..

[11]  K. Loparo,et al.  Analysis of switched linear systems in the plane, part 2: Global behavior of trajectories, controllability and attainability , 1987 .

[12]  Robin J. Evans,et al.  Robust output feedback stabilizability via controller switching , 1999, Autom..

[13]  S. M. Williams,et al.  Adaptive frequency domain control of PWM switched power line conditioner , 1990 .

[14]  Robert L. Foote,et al.  Controllability of linear systems, differential geometry curves in grassmannians and generalized grassmannians, and riccati equations , 1989 .

[15]  Zhengguo Li,et al.  Switched controllers and their applications in bilinear systems , 2001, Autom..

[16]  H. Sira-Ramírez Nonlinear P-I controller design for switchmode DC-to-DC power converters , 1991 .

[17]  Robin J. Evans,et al.  Robust output feedback stabilizability via controller switching , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[18]  A. Morse,et al.  Basic problems in stability and design of switched systems , 1999 .

[19]  Zhendong Sun,et al.  On reachability and stabilization of switched linear systems , 2001, IEEE Trans. Autom. Control..

[20]  Wilfred Kaplan,et al.  Introduction to analytic functions , 1969 .

[21]  Ilya Kolmanovsky,et al.  Developments in nonholonomic control problems , 1995 .

[22]  Kumpati S. Narendra,et al.  Adaptive control using multiple models , 1997, IEEE Trans. Autom. Control..

[23]  P. Caines,et al.  Hierarchical hybrid control systems: a lattice theoretic formulation , 1998, IEEE Trans. Autom. Control..

[24]  A. Morse Supervisory control of families of linear set-point controllers , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[25]  R. W. Brockett,et al.  Asymptotic stability and feedback stabilization , 1982 .

[26]  David P. Stanford,et al.  The structure of the controllable set for multimodal systems , 1987 .

[27]  P. Ramadge,et al.  Periodicity and chaos from switched flow systems: contrasting examples of discretely controlled continuous systems , 1993, IEEE Trans. Autom. Control..

[28]  Alexander Leonessa,et al.  Nonlinear system stabilization via hierarchical switching control , 2001, IEEE Trans. Autom. Control..

[29]  I. Kolmanovsky,et al.  Hybrid feedback laws for a class of cascade nonlinear control systems , 1996, IEEE Trans. Autom. Control..

[30]  Xuping Xu,et al.  On the reachability of a class of second-order switched systems , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).