A duality based semismooth Newton framework for solving variational inequalities of the second kind

In an appropriate function space setting, semismooth Newton methods are proposed for iteratively computing the solution of a rather general class of variational inequalities (VIs) of the second kind. The Newton scheme is based on the Fenchel dual of the original VI problem which is regularized if necessary. In the latter case, consistency of the regularization with respect to the original problem is studied. The application of the general framework to specific model problems including Bingham flows, simplified friction, or total variation regularization in mathematical imaging is described in detail. Finally, numerical experiments are presented in order to verify the theoretical results.

[1]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[2]  P. P. Mosolov,et al.  Variational methods in the theory of the fluidity of a viscous-plastic medium , 1965 .

[3]  Haim Brezis,et al.  Monotonicity Methods in Hilbert Spaces and Some Applications to Nonlinear Partial Differential Equations , 1971 .

[4]  J. Lions,et al.  Inequalities in mechanics and physics , 1976 .

[5]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[6]  Applications aux phénomènes stationnaires et d'évolution , 1976 .

[7]  R. Mifflin Semismooth and Semiconvex Functions in Constrained Optimization , 1977 .

[8]  E. Giusti Minimal surfaces and functions of bounded variation , 1977 .

[9]  高等学校計算数学学報編輯委員会編 高等学校計算数学学報 = Numerical mathematics , 1979 .

[10]  R. Glowinski Lectures on Numerical Methods for Non-Linear Variational Problems , 1981 .

[11]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[12]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[13]  L. Grippo,et al.  A nonmonotone line search technique for Newton's method , 1986 .

[14]  J. Oden,et al.  Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .

[15]  R. Hoppe Multigrid Algorithms for Variational Inequalities , 1987 .

[16]  Vladimir Tulovsky Mathematical Analysis and Numerical Methods for Science and Technology, Volume 2: Functional and Variational Methods (Robert Daut ray and Jacques-Louis Lions; Ian N. Sneddon, trans.) , 1990, SIAM Rev..

[17]  B. Reddy Mixed variational inequalities arising in elastoplasticity , 1992 .

[18]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[19]  Liqun Qi,et al.  A nonsmooth version of Newton's method , 1993, Math. Program..

[20]  R. Hoppe,et al.  Adaptive multilevel methods for obstacle problems , 1994 .

[21]  R. Kornhuber Monotone multigrid methods for elliptic variational inequalities I , 1994 .

[22]  R. Kornhuber Monotone multigrid methods for elliptic variational inequalities II , 1996 .

[23]  Max D. Gunzburger,et al.  Navier-Stokes equations for incompressible flows: Finite-element methods , 1996 .

[24]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[25]  Kazufumi Ito,et al.  The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..

[26]  Weimin Han,et al.  Inexact Uzawa algorithms for variational inequalities of the second kind , 2003 .

[27]  Karl Kunisch,et al.  Total Bounded Variation Regularization as a Bilaterally Constrained Optimization Problem , 2004, SIAM J. Appl. Math..

[28]  Michael Ulbrich,et al.  A mesh-independence result for semismooth Newton methods , 2004, Math. Program..

[29]  Georg Stadler,et al.  Semismooth Newton and Augmented Lagrangian Methods for a Simplified Friction Problem , 2004, SIAM J. Optim..

[30]  Karl Kunisch,et al.  Path-following Methods for a Class of Constrained Minimization Problems in Function Space , 2006, SIAM J. Optim..

[31]  Michael Hintermüller,et al.  An Infeasible Primal-Dual Algorithm for Total Bounded Variation-Based Inf-Convolution-Type Image Restoration , 2006, SIAM J. Sci. Comput..

[32]  Roland Glowinski,et al.  On the numerical simulation of Bingham visco-plastic flow: Old and new results , 2007 .

[33]  M. Olshanskii,et al.  Two finite-difference schemes for calculation of Bingham fluid flows in a cavity , 2008 .

[34]  MICHAEL HINTERMÜLLER,et al.  PDE-Constrained Optimization Subject to Pointwise Constraints on the Control, the State, and Its Derivative , 2009, SIAM J. Optim..

[35]  Yiqiu Dong,et al.  Multi-scale Total Variation with Automated Regularization Parameter Selection for Color Image Restoration , 2009, SSVM.

[36]  Juan Carlos De Los Reyes,et al.  Path following methods for steady laminar Bingham flow in cylindrical pipes , 2009 .

[37]  Michael Hintermüller,et al.  Mathematical Programs with Complementarity Constraints in Function Space: C- and Strong Stationarity and a Path-Following Algorithm , 2009, SIAM J. Optim..

[38]  Sergio González Andrade,et al.  Numerical simulation of two-dimensional Bingham fluid flow by semismooth Newton methods , 2010, J. Comput. Appl. Math..

[39]  E. Haber,et al.  A mixed formulation of the Bingham fluid flow problem: Analysis and numerical solution , 2011 .