Sensitivity study of dynamic systems using polynomial chaos

Global sensitivity has mainly been analyzed in static models, though most physical systems can be described by differential equations. Very few approaches have been proposed for the sensitivity of dynamic models and the only ones are local. Nevertheless, it would be of great interest to consider the entire uncertainty range of parameters since they can vary within large intervals depending on their meaning. Other advantage of global analysis is that the sensitivity indices of a given parameter are evaluated while all the other parameters can be varied. In this way, the relative variability of each parameter is taken into account, revealing any possible interactions. This paper presents the global sensitivity analysis for dynamic models with an original approach based on the polynomial chaos (PC) expansion of the output. The evaluation of the PC expansion of the output is less expensive compared to direct simulations. Moreover, at each time instant, the coefficients of the PC decomposition convey the parameter sensitivity and then a sensitivity function can be obtained. The PC coefficients are determined using non-intrusive methods. The proposed approach is illustrated with some well-known dynamic systems.

[1]  Julien Jacques,et al.  Sensitivity analysis in presence of model uncertainty and correlated inputs , 2006, Reliab. Eng. Syst. Saf..

[2]  J. D. Morrison,et al.  Evaluating prediction uncertainty in simulation models , 1999 .

[3]  Michaël Baudin,et al.  Polynômes de chaos sous Scilab via la librairie NISP , 2010 .

[4]  M. Eldred Recent Advances in Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Analysis and Design , 2009 .

[5]  Emanuele Borgonovo,et al.  A new uncertainty importance measure , 2007, Reliab. Eng. Syst. Saf..

[6]  Emanuele Borgonovo,et al.  Model emulation and moment-independent sensitivity analysis: An application to environmental modelling , 2012, Environ. Model. Softw..

[7]  N. Wiener The Homogeneous Chaos , 1938 .

[8]  M. Ratto,et al.  Using recursive algorithms for the efficient identification of smoothing spline ANOVA models , 2010 .

[9]  K. Shuler,et al.  Nonlinear sensitivity analysis of multiparameter model systems , 1977 .

[10]  Stefano Tarantola,et al.  Application of global sensitivity analysis of model output to building thermal simulations , 2008 .

[11]  Bruno Sudret,et al.  Efficient computation of global sensitivity indices using sparse polynomial chaos expansions , 2010, Reliab. Eng. Syst. Saf..

[12]  Sharif Rahman,et al.  Global sensitivity analysis by polynomial dimensional decomposition , 2011, Reliab. Eng. Syst. Saf..

[13]  Olivier P. Le Maître,et al.  Polynomial chaos expansion for sensitivity analysis , 2009, Reliab. Eng. Syst. Saf..

[14]  John Red-Horse,et al.  Propagation of probabilistic uncertainty in complex physical systems using a stochastic finite element approach , 1999 .

[15]  Bruno Sudret,et al.  Sparse polynomial chaos expansions and adaptive stochastic finite elements using a regression approach , 2008 .

[16]  P. Vanrolleghem,et al.  Practical aspects of sensitivity function approximation for dynamic models , 2006 .

[17]  Henry P. Wynn,et al.  Principal components analysis in sensitivity studies of dynamic systems , 2006 .

[18]  D. Xiu,et al.  Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .

[19]  Andrea Saltelli,et al.  Sensitivity Analysis for Importance Assessment , 2002, Risk analysis : an official publication of the Society for Risk Analysis.

[20]  Ilya M. Sobol,et al.  Sensitivity Estimates for Nonlinear Mathematical Models , 1993 .

[21]  M. Lemaire,et al.  Stochastic finite element: a non intrusive approach by regression , 2006 .

[22]  Stefano Tarantola,et al.  Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models , 2004 .

[23]  A. Saltelli,et al.  A quantitative model-independent method for global sensitivity analysis of model output , 1999 .

[24]  A. Saltelli,et al.  Importance measures in global sensitivity analysis of nonlinear models , 1996 .

[25]  H Christopher Frey,et al.  OF SENSITIVITY ANALYSIS , 2001 .

[26]  Bruno Sudret,et al.  A stochastic finite element procedure for moment and reliability analysis , 2006 .

[27]  Jeroen A. S. Witteveen,et al.  Modeling Arbitrary Uncertainties Using Gram-Schmidt Polynomial Chaos , 2006 .

[28]  Bruno Sudret,et al.  Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..

[29]  Stefano Tarantola,et al.  Sensitivity Analysis in Practice , 2002 .

[30]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[31]  Gregery T. Buzzard,et al.  Global sensitivity analysis using sparse grid interpolation and polynomial chaos , 2012, Reliab. Eng. Syst. Saf..

[32]  Bruno Sudret,et al.  Non linear non intrusive stochastic finite element method-A pplication to a fracture mechanics problem , 2004 .

[33]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .