Materials and Applications for Solution-Processed Organic Field-Effect Transistors

Organic field-effect transistors (FETs) are presently attracting significant academic research and industrial development interests as they offer performance capabilities comparable to those of thin-film amorphous silicon transistors but at the same time are compatible with low-temperature solution/printing-based manufacturing on flexible plastic substrates. In this paper, we review recent materials advances to improve the field-effect mobility of solution-processed organic semiconductors, discuss recent insight into the physics that determines the electronic structure at the semiconductor-gate dielectric interface in these devices, and provide an overview over some of the near- and medium-term applications.

[1]  T. Anthopoulos,et al.  Air-stable ambipolar organic transistors , 2007 .

[2]  Zhenan Bao,et al.  Soluble and processable regioregular poly(3‐hexylthiophene) for thin film field‐effect transistor applications with high mobility , 1996 .

[3]  K. Müllen,et al.  Field-effect transistors based on a benzothiadiazole-cyclopentadithiophene copolymer. , 2007, Journal of the American Chemical Society.

[4]  Tobin J Marks,et al.  Tuning orbital energetics in arylene diimide semiconductors. materials design for ambient stability of n-type charge transport. , 2007, Journal of the American Chemical Society.

[5]  Tobin J. Marks,et al.  High‐Performance Solution‐Deposited n‐Channel Organic Transistors and their Complementary Circuits , 2007 .

[6]  Thomas N Jackson,et al.  Organic field-effect transistors from solution-deposited functionalized acenes with mobilities as high as 1 cm2/V x s. , 2005, Journal of the American Chemical Society.

[7]  Kris Myny,et al.  50 MHz rectifier based on an organic diode , 2005, Nature materials.

[8]  H. Katz Recent Advances in Semiconductor Performance and Printing Processes for Organic Transistor-Based Electronics , 2004 .

[9]  John E. Anthony,et al.  Improving Organic Thin‐Film Transistor Performance through Solvent‐Vapor Annealing of Solution‐Processable Triethylsilylethynyl Anthradithiophene , 2006 .

[10]  S. W. Thomas,et al.  Chemical sensors based on amplifying fluorescent conjugated polymers. , 2007, Chemical reviews.

[11]  T. Someya,et al.  Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Ji-Seon Kim,et al.  Spatial control of the recombination zone in ambipolar light-emitting polymer transistors , 2006, SPIE Photonics Europe.

[13]  N. Ono,et al.  P‐19: High Performance Porphyrin Semiconductor for Transistor Applications , 2005 .

[14]  H. Sirringhaus,et al.  High-Resolution Ink-Jet Printing of All-Polymer Transistor Circuits , 2000, Science.

[15]  N. S. Sariciftci,et al.  Conjugated polymer-based organic solar cells. , 2007, Chemical reviews.

[16]  Henning Sirringhaus,et al.  Manufacturing of Organic Transistor Circuits by Solution‐based Printing , 2006 .

[17]  H. Klauk,et al.  Ultralow-power organic complementary circuits , 2007, Nature.

[18]  P. Blom,et al.  Organic thin-film electronics from vitreous solution-processed rubrene hypereutectics , 2005, Nature materials.

[19]  Erik van Veenendaal,et al.  A 13.56-MHz RFID System Based on Organic Transponders , 2006, IEEE Journal of Solid-State Circuits.

[20]  John E Anthony,et al.  Functionalized acenes and heteroacenes for organic electronics. , 2006, Chemical reviews.

[21]  Janos Veres,et al.  Gate Insulators in Organic Field-Effect Transistors , 2004 .

[22]  Karl R. Amundson,et al.  A scalable manufacturing process for flexible active‐matrix e‐paper displays , 2005 .

[23]  Elsa Reichmanis,et al.  Ring oscillator fabricated completely by means of mass-printing technologies , 2007 .

[24]  M. Kane 6.4 Organic Thin-Film Transistors for Flat-Panel Displays , 2007 .

[25]  René A. J. Janssen,et al.  Multicomponent semiconducting polymer systems with low crystallization-induced percolation threshold , 2006, Nature materials.

[26]  Janos Veres,et al.  Low‐k Insulators as the Choice of Dielectrics in Organic Field‐Effect Transistors , 2003 .

[27]  H. Sirringhaus,et al.  A quantitative analytical model for static dipolar disorder broadening of the density of states at organic heterointerfaces. , 2008, The Journal of chemical physics.

[28]  K. Walzer,et al.  Highly efficient organic devices based on electrically doped transport layers. , 2007, Chemical reviews.

[29]  H. Sirringhaus,et al.  Polaron Localization at Interfaces in High‐Mobility Microcrystalline Conjugated Polymers , 2009 .

[30]  T. Minakata,et al.  Direct formation of pentacene thin films by solution process , 2005 .

[31]  Yong-Young Noh,et al.  Downscaling of self-aligned, all-printed polymer thin-film transistors. , 2007, Nature nanotechnology.

[32]  Maxim Shkunov,et al.  Liquid-crystalline semiconducting polymers with high charge-carrier mobility , 2006, Nature materials.

[33]  Henning Sirringhaus,et al.  Electron and ambipolar transport in organic field-effect transistors. , 2007, Chemical reviews.

[34]  Richard H. Friend,et al.  General observation of n-type field-effect behaviour in organic semiconductors , 2005, Nature.

[35]  Erik Van Veenendaal,et al.  60.4: Invited Paper: Rollable Displays — A Technology Development Enabling Breakthrough Mobile Devices , 2008 .

[36]  Richard H. Friend,et al.  Lithography‐Free, Self‐Aligned Inkjet Printing with Sub‐Hundred‐Nanometer Resolution , 2005 .

[37]  D. M. Leeuw,et al.  Stability of n-type doped conducting polymers and consequences for polymeric microelectronic devices , 1997 .

[38]  V. R. Raju,et al.  Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[39]  R. Sarpeshkar,et al.  Large-scale complementary integrated circuits based on organic transistors , 2000, Nature.

[40]  Ping Liu,et al.  High-performance semiconducting polythiophenes for organic thin-film transistors. , 2004, Journal of the American Chemical Society.

[41]  E. W. Meijer,et al.  Two-dimensional charge transport in self-organized, high-mobility conjugated polymers , 1999, Nature.

[42]  Takao Someya,et al.  Organic transistors manufactured using inkjet technology with subfemtoliter accuracy , 2008, Proceedings of the National Academy of Sciences.

[43]  Dago M. de Leeuw,et al.  Switching and filamentary conduction in non-volatile organic memories , 2006 .

[44]  K. Müllen,et al.  The Influence of Morphology on High‐Performance Polymer Field‐Effect Transistors , 2009 .

[45]  Henning Sirringhaus,et al.  Device Physics of Solution‐Processed Organic Field‐Effect Transistors , 2005 .

[46]  Takao Someya,et al.  Organic Semiconductor Devices with Enhanced Field and Environmental Responses for Novel Applications , 2008 .