Some formulas for the Appell function F 1 (a, b, b′; c; w, z)

Some new relations for the Appell function F 1 (a, b, b′; c; w, z) are obtained including differentiation and integration formulas, integral representations, series and recurrence relations. Some integrals are given which can be expressed in terms of F 1 and confluent Appell functions (Humbert functions) Φ1, Φ2, Φ3.

[1]  W. N. Bailey,et al.  Generalized hypergeometric series , 1935 .

[2]  N. Saad,et al.  Calculation of generalized Hubbell rectangular source integral. , 2010, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[3]  Hari M. Srivastava,et al.  Recursion formulas for Appell's hypergeometric function F2 with some applications to radiation field problems , 2009, Appl. Math. Comput..

[4]  W. Rheinboldt,et al.  Generalized hypergeometric functions , 1968 .

[5]  F. D. Colavecchia,et al.  Hypergeometric integrals arising in atomic collisions physics , 1997 .

[6]  P. W. Karlsson,et al.  Multiple Gaussian hypergeometric series , 1985 .

[7]  S. Nishiyama Appell's Hypergeometric Function $F_2$ and Periods of Certain Elliptic K3 Surfaces , 1987 .

[8]  W. N. Bailey ON THE DOUBLE-INTEGRAL REPRESENTATION OF APPELL'S FUNCTION F4 , 1941 .

[9]  W. N. Bailey Some Infinite Integrals Involving Bessel Functions , 1936 .

[10]  E. M. Lifshitz,et al.  Quantum mechanics: Non-relativistic theory, , 1959 .

[11]  I︠u︡. A Brychkov Handbook of Special Functions: Derivatives, Integrals, Series and Other Formulas , 2008 .

[12]  M. Shpot A massive Feynman integral and some reduction relations for Appell functions , 2007, 0711.2742.

[13]  J. C. Eilbeck Table errata: Higher transcendental functions. Vol. I, II (McGraw-Hill, New York, 1953) by A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi , 1971 .

[14]  B. Kniehl,et al.  Functional equations for one-loop master integrals for heavy-quark production and Bhabha scattering , 2009, 0904.3729.

[15]  V. Tarasov W. Gordon’s integral (1929) and its representations by means of Appell’s functions F2, F1, and F3 , 2003 .

[16]  Paul F. Byrd,et al.  Handbook of elliptic integrals for engineers and scientists , 1971 .

[17]  A. W. Kemp,et al.  A treatise on generating functions , 1984 .

[18]  M. Sanchis-Lozano,et al.  Generalized hypergeometric functions and the evaluation of scalar one-loop integrals in Feynman diagrams , 1998, hep-ph/9809213.

[19]  Xiaoxia Wang,et al.  Recursion formulas for Appell functions , 2012 .

[20]  A. Prudnikov,et al.  Integrals and series of special functions , 1983 .