Stochastic differential equations driven by $G$-Brownian motion with reflecting boundary conditions

In this paper, we introduce the idea of stochastic integrals with respect to an increasing process in the $G$-framework and extend $G$-Ito's formula. Moreover, we study the solvability of the scalar valued stochastic differential equations driven by $G$ Brownian motion with reflecting boundary conditions (RGSDEs).

[1]  S. Ramasubramanian Reflected backward stochastic differential equations in an orthant , 2002 .

[2]  S. Peng G -Expectation, G -Brownian Motion and Related Stochastic Calculus of Itô Type , 2006, math/0601035.

[3]  Marcel Nutz Pathwise construction of stochastic integrals , 2011, 1108.2981.

[4]  P. Lions,et al.  Stochastic differential equations with reflecting boundary conditions , 1984 .

[5]  M. Wodzicki Lecture Notes in Math , 1984 .

[6]  G. Kallianpur Stochastic differential equations and diffusion processes , 1981 .

[7]  É. Pardoux,et al.  Equations différentielles stochastiques rétrogrades réfléchies dans un convexe , 1996 .

[8]  A. Skorokhod Stochastic Equations for Diffusion Processes in a Bounded Region , 1961 .

[9]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[10]  Nizar Touzi,et al.  Wellposedness of second order backward SDEs , 2010, 1003.6053.

[11]  S. Peng,et al.  Reflected solutions of backward SDE's, and related obstacle problems for PDE's , 1997 .

[12]  T. H. Hildebrandt Definitions of Stieltjes Integrals of the Riemann Type , 1938 .

[13]  Hiroshi Tanaka Stochastic differential equations with reflecting boundary condition in convex regions , 1979 .

[14]  池田 信行,et al.  Stochastic differential equations and diffusion processes , 1981 .

[15]  Toshio Yamada On the uniqueness of solutions of stochastic differential equations with reflecting barrier conditions , 1976 .

[16]  H. Soner,et al.  Dual Formulation of Second Order Target Problems , 2010, 1003.6050.

[17]  Fuqing Gao,et al.  Pathwise properties and homeomorphic flows for stochastic differential equations driven by G-Brownian motion , 2009 .

[18]  S. Varadhan,et al.  Diffusion processes with boundary conditions , 1971 .

[19]  Ying Hu,et al.  Multi-dimensional BSDE with oblique reflection and optimal switching , 2007, 0706.4365.

[20]  L. Denis,et al.  A THEORETICAL FRAMEWORK FOR THE PRICING OF CONTINGENT CLAIMS IN THE PRESENCE OF MODEL UNCERTAINTY , 2006, math/0607111.

[21]  Shige Peng,et al.  Function Spaces and Capacity Related to a Sublinear Expectation: Application to G-Brownian Motion Paths , 2008, 0802.1240.

[22]  L. Rogers Stochastic differential equations and diffusion processes: Nobuyuki Ikeda and Shinzo Watanabe North-Holland, Amsterdam, 1981, xiv + 464 pages, Dfl.175.00 , 1982 .

[23]  A. Matoussi,et al.  Second order reflected backward stochastic differential equations. , 2012, 1201.0746.

[24]  S. Peng Nonlinear Expectations and Stochastic Calculus under Uncertainty , 2010, Probability Theory and Stochastic Modelling.

[25]  H. Soner,et al.  Quasi-sure Stochastic Analysis through Aggregation , 2010, 1003.4431.

[26]  Xue-peng Bai,et al.  On the existence and uniqueness of solutions to stochastic differential equations driven by G-Brownian motion with integral-Lipschitz coefficients , 2010, Acta Mathematicae Applicatae Sinica, English Series.

[27]  A. Skorokhod,et al.  Stochastic Equations for Diffusion Processes in a Bounded Region. II , 1962 .

[28]  N. Elkaroui Processus de reflexion dans Rn , 1975 .