Cation site preferences in layered oxide chalcogenides, synthesis, structures and magnetic ordering in Sr3-xCaxFe2O5Cu2Ch2 (Ch = S, Se; x = 1, 2)

[1]  F. Kadlec,et al.  Structural, magnetic, and spin dynamical properties of the polar antiferromagnets Ni3−xCoxTeO6(x=1,2) , 2020 .

[2]  M. Hayward Synthesis and Magnetism of Extended Solids Containing Transition-Metal Cations in Square-Planar, MO4 Coordination Sites. , 2019, Inorganic chemistry.

[3]  Alan A. Coelho,et al.  TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++ , 2018 .

[4]  N. Tiercelin,et al.  A comprehensive study of magnetic exchanges in the layered oxychalcogenides Sr3Fe2O5Cu2Q2 (Q = S, Se) , 2017 .

[5]  M. Batuk,et al.  Complex Microstructure and Magnetism in Polymorphic CaFeSeO. , 2016, Inorganic chemistry.

[6]  C. Stock,et al.  The magnetic and electronic properties of oxyselenides—influence of transition metal ions and lanthanides , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[7]  M. Valldor Anion Ordering in Bichalcogenides , 2016 .

[8]  P. Vaqueiro,et al.  Layered oxychalcogenides: Structural chemistry and thermoelectric properties , 2016 .

[9]  A. Abakumov,et al.  Soft chemical control of the crystal and magnetic structure of a layered mixed valent manganite oxide sulfide , 2015 .

[10]  A. Maignan,et al.  Structural, magnetic and transport properties of 2D structured perovskite oxychalcogenides , 2014 .

[11]  Y. Kamihara,et al.  Transport Properties of the Layered Transition Metal Oxypnictide Sr2ScMPO3 with MP layers (M =Mn, Ni and Co0.5Fe0.5) , 2014 .

[12]  P. Manuel,et al.  Wish: The New Powder and Single Crystal Magnetic Diffractometer on the Second Target Station , 2011 .

[13]  John S. O. Evans,et al.  Synthesis, Structure and Properties of Several New Oxychalcogenide Materials with the General Formula A2O2M2OSe2 (A = La−Sm, M = Fe, Mn) , 2011 .

[14]  D. Charkin,et al.  Synthesis, crystal structure, and properties of novel perovskite oxychalcogenides, Ca2CuFeO3Ch (Ch = S, Se) , 2010, 1110.2035.

[15]  J. Parker,et al.  Beamline I11 at Diamond: a new instrument for high resolution powder diffraction. , 2009, The Review of scientific instruments.

[16]  P. Adamson,et al.  Structures, physical properties, and chemistry of layered oxychalcogenides and oxypnictides. , 2008, Inorganic chemistry.

[17]  L. Cario,et al.  Structure and magnetic properties of oxychalcogenides A2F2Fe2OQ2 (A = Sr, Ba; Q = S, Se) with Fe2O square planar layers representing an antiferromagnetic checkerboard spin lattice. , 2008, Journal of the American Chemical Society.

[18]  Hideo Hosono,et al.  Iron-based layered superconductor La[O(1-x)F(x)]FeAs (x = 0.05-0.12) with T(c) = 26 K. , 2008, Journal of the American Chemical Society.

[19]  J. Cabana,et al.  Layered oxysulfides Sr2MnO2Cu2m-0.5Sm+1 (m = 1, 2, and 3) as insertion hosts for Li ion batteries. , 2006, Journal of the American Chemical Society.

[20]  David E. Tanner,et al.  ISODISPLACE: a web-based tool for exploring structural distortions , 2006 .

[21]  Gareth R. Williams,et al.  Reversible lithium insertion and copper extrusion in layered oxysulfides. , 2006, Chemical communications.

[22]  G. André,et al.  Design and magnetic properties of new compounds containing iron 2D building blocks of the perovskite type , 2005 .

[23]  L. Cario,et al.  Designing New Inorganic Compounds from 2D Building Blocks , 2005 .

[24]  M. Hayward,et al.  The cation-deficient Ruddlesden-Popper oxysulfide Y2Ti2O5S2 as a layered sulfide: topotactic potassium intercalation to form KY2Ti2O5S2. , 2003, Inorganic chemistry.

[25]  W. J. Zhu,et al.  Crystal Structure of New Layered Oxysulfides: Sr3Cu2Fe2O5S2and Sr2CuMO3S (M=Cr, Fe, In) , 1997 .

[26]  I. D. Brown,et al.  Bond‐valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database , 1985 .

[27]  G. Shirane A NOTE ON THE MAGNETIC INTENSITIES OF POWDER NEUTRON DIFFRACTION , 1959 .