Industrial innovation based on fundamental physics

Industrial innovation frequently results from an improved understanding of basic physics. Scientific discoveries quite often lead to engineering inventions that have not been the target of the original investigations. Examples are given from the field of plasma physics and plasma technology. High voltage circuit breakers, ozone generators, high power CO2 lasers, excimer lamps, and plasma display panels have profited substantially from initially purely scientific investigations. In the meantime they have reached multi-billion dollar market shares.

[1]  W. Curtis A New Band Spectrum Associated with Helium , 1913 .

[2]  D. C. Griffin,et al.  Low Temperature Plasma , 1998 .

[3]  Ulrich Kogelschatz,et al.  From ozone generators to flat television screens: history and future potential of dielectric-barrier discharges , 1999 .

[4]  Ulrich Kogelschatz,et al.  Generation of excimer emission in dielectric barrier discharges , 1991 .

[5]  J. Lowke,et al.  Radiation emission coefficients for sulfur hexafluoride arc plasmas , 1976 .

[6]  W. Siemens,et al.  Ueber die elektrostatische Induction und die Verzögerung des Stroms in Flaschendrähten , 1857 .

[7]  Yoshio Tanaka Continuous Emission Spectra of Rare Gases in the Vacuum Ultraviolet Region , 1955 .

[8]  E. M. Veldhuizen,et al.  Electrical discharges for environmental purposes : fundamentals and applications , 2000 .

[9]  K. Ragaller,et al.  Current Interruption in High-Voltage Networks , 1978 .

[10]  Michael Hirth,et al.  Ozone synthesis from oxygen in dielectric barrier discharges , 1987 .

[11]  U. Kogelschatz,et al.  Silent discharges for the generation of ultraviolet and vacuum ultraviolet excimer radiation , 1990 .

[12]  M. Kuzumoto,et al.  Silent discharges in ozonisers and CO 2 lasers , 1995 .

[13]  Suhrmann Elektrische Gasentladungen, ihre Physik und Technik. Von A. v. Engel und M. Steenbeck, 2. Band: Entladungseigenschaften, technische Anwendungen; 352 S. und 250 Textabbildungen. Verlag von J. Springer, Berlin 1932. Preis geh. RM. 32.—, geb. RM. 33,50 , 1935 .

[14]  M. Kuzumoto,et al.  Role of N2 gas in a transverse-flow CW CO2 laser excited by silent discharge , 1989 .

[15]  B. Stevens,et al.  Radiative Life-time of the Pyrene Dimer and the Possible Role of Excited Dimers in Energy Transfer Processes , 1960, Nature.

[16]  L. S. Frost,et al.  Composition and transport properties of SF 6 and their use in a simplified enthalpy flow arc model , 1971 .

[17]  Ian W. Boyd,et al.  High-intensity sources of incoherent UV and VUV excimer radiation for low-temperature materials processing , 2000 .

[18]  M. Steenbeck,et al.  Über die Glimmentladung bei hohen Drucken , 1933 .

[19]  A. Engel,et al.  Electric Plasmas: Their Nature and Uses , 1983 .

[20]  K. Buss Die elektrodenlose Entladung nach Messung mit dem Kathodenoszillographen , 1932 .

[21]  K. Honda,et al.  On the Nature of Silent Electric Discharge , 1955 .

[22]  Enrico Gobbetti,et al.  Encyclopedia of Electrical and Electronics Engineering , 1999 .

[23]  A. J. Kelly,et al.  Handbook of Electrostatic Processes , 1995 .

[24]  Ulrich Kogelschatz,et al.  UV excimer radiation from dielectric-barrier discharges , 1988 .

[25]  B. Eliasson,et al.  Modeling and applications of silent discharge plasmas , 1991 .

[26]  Ulrich Kogelschatz,et al.  Modification of surfaces with new excimer UV sources , 1992 .

[27]  Ian W. Boyd,et al.  Low temperature photo-oxidation of silicon using a xenon excimer lamp , 1997 .

[28]  Ulrich Kogelschatz,et al.  Silent-discharge driven excimer UV sources and their applications , 1992 .

[29]  Masaaki Tanaka,et al.  Silent-discharge excited TEM/sub 00/ 2.5 kW CO/sub 2/ laser , 1989 .