Anisotropic semivortices in dipolar spinor condensates controlled by Zeeman splitting

Spatially anisotropic solitary vortices (AVSs), supported by anisotropic dipole-dipole interactions, were recently predicted in spin-orbit-coupled binary Bose-Einstein condensates (BECs), in the form of two-dimensional semi-vortices (complexes built of zero-vorticity and vortical components). We demonstrate that the shape of the AVSs -- horizontal or vertical, with respect to the in-plane polarization of the atomic dipole moments in the underlying BEC -- may be effectively controlled by strength $\Omega$ of the Zeeman splitting (ZS). A transition from the horizontal to vertical shape with the increase of $\Omega$ is found numerically and explained analytically. At the transition point, the AVS assumes the shape of an elliptical ring. Mobility of horizontal AVSs is studied too, with a conclusion that, with the increase of $\Omega $, their negative effective mass changes the sign into positive via a point at which the effective mass diverges. Lastly, we report a new species of \textit{inverted} AVSs, with the zero-vorticity and vortex component placed in lower- and higher-energy components, as defined by the ZS. They are excited states, with respect to the ground states provided by the usual AVSs. Quite surprisingly, inverted AVSs are stable in a large parameter region.

[1]  Boris A. Malomed,et al.  Two-dimensional solitons and quantum droplets supported by competing self- and cross-interactions in spin-orbit-coupled condensates , 2017, 1706.06725.

[2]  Boris A. Malomed,et al.  Two-dimensional solitons in dipolar Bose-Einstein condensates with spin-orbit coupling , 2015, 1512.02856.

[3]  G. Rempe,et al.  Control of a magnetic Feshbach resonance with laser light , 2009, 0902.2151.

[4]  Zheng-Wei Zhou,et al.  Stable Solitons in Three Dimensional Free Space without the Ground State: Self-Trapped Bose-Einstein Condensates with Spin-Orbit Coupling. , 2015, Physical review letters.

[5]  R. Heidemann,et al.  Rydberg excitation of Bose-Einstein condensates. , 2007, Physical review letters.

[6]  Lluis Torner,et al.  Twisted toroidal vortex solitons in inhomogeneous media with repulsive nonlinearity. , 2014, Physical review letters.

[7]  Lluis Torner,et al.  Bright solitons from defocusing nonlinearities. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Anders Berntson,et al.  Internal dynamics of nonlinear beams in their ground states: short- and long-lived excitation , 1999 .

[9]  Yuri S. Kivshar,et al.  Optical vortices and vortex solitons , 2004, SPIE Optics + Photonics.

[10]  Rodislav Driben,et al.  Soliton gyroscopes in media with spatially growing repulsive nonlinearity. , 2013, Physical review letters.

[11]  Boris A. Malomed,et al.  Spatiotemporal solitons in multidimensional optical media with a quadratic nonlinearity , 1997 .

[12]  Wenhua Hai,et al.  Algebraic bright and vortex solitons in self-defocusing media with spatially inhomogeneous nonlinearity , 2013 .

[13]  S. K. Adhikari,et al.  Vortex-bright solitons in a spin-orbit-coupled spin-1 condensate , 2017 .

[14]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[15]  Robert L. Pego,et al.  Spectrally Stable Encapsulated Vortices for Nonlinear Schrödinger Equations , 2001, J. Nonlinear Sci..

[16]  Gadi Fibich,et al.  Self-Focusing in the Perturbed and Unperturbed Nonlinear Schrödinger Equation in Critical Dimension , 1999, SIAM J. Appl. Math..

[17]  Yan Liu,et al.  Mixed-mode solitons in quadrupolar BECs with spin-orbit coupling , 2017, Commun. Nonlinear Sci. Numer. Simul..

[18]  Y. P. Chen,et al.  Extreme tunability of interactions in a 7Li Bose-Einstein condensate. , 2008, Physical review letters.

[19]  Dmitry V. Skryabin,et al.  Optical Solitons Carrying Orbital Angular Momentum , 1997 .

[20]  L. Santos,et al.  Two-dimensional bright solitons in dipolar Bose-Einstein condensates , 2005, EQEC '05. European Quantum Electronics Conference, 2005..

[21]  Boris A. Malomed,et al.  Lattice solitons with quadrupolar intersite interactions , 2013, 1312.2969.

[22]  B. Malomed,et al.  Anisotropic solitons in dipolar bose-einstein condensates. , 2007, Physical review letters.

[23]  Hidetsugu Sakaguchi,et al.  Creation of two-dimensional composite solitons in spin-orbit-coupled self-attractive Bose-Einstein condensates in free space. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  T. Lakoba,et al.  Universally‐Convergent Squared‐Operator Iteration Methods for Solitary Waves in General Nonlinear Wave Equations , 2007, nlin/0702033.

[25]  Yuri S. Kivshar,et al.  Optical Solitons: From Fibers to Photonic Crystals , 2003 .

[26]  B. Malomed,et al.  Vortex solitons in dipolar Bose-Einstein condensates , 2008, 0809.4356.

[27]  Anders Berntson,et al.  Analysis of stable self-trapping of laser beams in cubic-quintic nonlinear media , 1998 .

[28]  M. Lewenstein,et al.  The physics of dipolar bosonic quantum gases , 2009, 0905.0386.

[29]  L. Santos,et al.  Stability of dark solitons in three dimensional dipolar Bose-Einstein condensates. , 2007, Physical review letters.

[30]  Luc Bergé,et al.  Wave collapse in physics: principles and applications to light and plasma waves , 1998 .

[31]  M Saffman,et al.  Rydberg-induced solitons: three-dimensional self-trapping of matter waves. , 2011, Physical review letters.

[32]  T. Killian,et al.  Controlling condensate collapse and expansion with an optical Feshbach resonance. , 2009, Physical review letters.

[33]  Mordechai Segev,et al.  Discrete solitons in photorefractive optically induced photonic lattices. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  Andreas Tünnermann,et al.  Two-dimensional soliton in cubic fs laser written waveguide arrays in fused silica. , 2006, Optics express.

[35]  K. Beckwitt,et al.  Two-dimensional optical spatiotemporal solitons in quadratic media , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[36]  W. Pang,et al.  Quadrupolar matter-wave soliton in two-dimensional free space , 2015 .

[37]  Boris A. Malomed,et al.  Two-dimensional dipolar gap solitons in free space with spin-orbit coupling , 2017, 1706.00144.

[38]  Lluis Torner,et al.  Algebraic bright and vortex solitons in defocusing media. , 2011, Optics letters.

[39]  B. Malomed,et al.  Motion of solitons in one-dimensional spin-orbit-coupled Bose-Einstein condensates , 2016, 1609.02164.

[40]  Humberto Michinel,et al.  Stable azimuthal stationary state in quintic nonlinear optical media , 1997 .

[41]  A. A. Kolokolov,et al.  Stationary solutions of the wave equation in a medium with nonlinearity saturation , 1973 .

[42]  Hidetsugu Sakaguchi,et al.  Vortex solitons in two-dimensional spin-orbit coupled Bose-Einstein condensates: Effects of the Rashba-Dresselhaus coupling and Zeeman splitting. , 2016, Physical review. E.

[43]  Antonio De Luca,et al.  Routing of anisotropic spatial solitons and modulational instability in liquid crystals , 2004, Nature.

[44]  Chuanwei Zhang,et al.  Properties of spin–orbit-coupled Bose–Einstein condensates , 2016 .

[45]  Alexander M. Rubenchik,et al.  On diffraction and dispersion effect on three wave interaction , 1981 .

[46]  L. Santos,et al.  Two-dimensional bright solitons in dipolar Bose-Einstein condensates , 2005, EQEC '05. European Quantum Electronics Conference, 2005..

[47]  M. Oberthaler,et al.  Dynamics of Bose-Einstein condensates in optical lattices , 2006 .

[48]  G. Fraiman,et al.  Thermal self-effect of wave beams in a plasma with a nonlocal nonlinearity , 1975 .

[49]  Succi,et al.  Ground state of trapped interacting bose-einstein condensates by an explicit imaginary-time algorithm , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[50]  Lei Wu,et al.  Vortex solitons in defocusing media with spatially inhomogeneous nonlinearity. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  Gadi Fibich,et al.  The Nonlinear Schrödinger Equation: Singular Solutions and Optical Collapse , 2015 .

[52]  Taras I. Lakoba,et al.  Accelerated Imaginary‐time Evolution Methods for the Computation of Solitary Waves , 2007, 0711.3434.