Quantitative thermo-acoustic imaging: An exact reconstruction formula

This paper aims to mathematically advance the field of quantitative thermo-acoustic imaging. Given several electromagnetic data sets, we establish for the first time an analytical formula for reconstructing the absorption coefficient from thermal energy measurements. Since the formula involves derivatives of the given data up to the third order, it is unstable in the sense that small measurement noises may cause large errors. However, in the presence of measurement noise, the obtained formula, together with a noise regularization technique, provides a good initial guess for the true absorption coefficient. We finally correct the errors by deriving a reconstruction formula based on the least square solution of an optimal control problem and prove that this optimization step reduces the errors occurring and enhances the resolution.

[1]  A. Majda,et al.  Absorbing boundary conditions for the numerical simulation of waves , 1977 .

[2]  Mickael Tanter,et al.  Multiwave imaging and super resolution , 2010 .

[3]  Habib Ammari,et al.  Reconstruction of the Optical Absorption Coefficient of a Small Absorber from the Absorbed Energy Density , 2011, SIAM J. Appl. Math..

[4]  Faouzi Triki,et al.  Uniqueness and stability for the inverse medium problem with internal data , 2010 .

[5]  J. Seo,et al.  A hybrid one-step inversion method for shear modulus imaging using time-harmonic vibrations , 2010 .

[6]  Habib Ammari,et al.  An Introduction to Mathematics of Emerging Biomedical Imaging , 2008 .

[7]  Eric Bonnetier,et al.  Electrical Impedance Tomography by Elastic Deformation , 2008, SIAM J. Appl. Math..

[8]  O. Scherzer,et al.  Hybrid tomography for conductivity imaging , 2011, 1112.2958.

[9]  Guillaume Bal,et al.  Inverse diffusion theory of photoacoustics , 2009, 0910.2503.

[10]  Eung Je Woo,et al.  Magnetic Resonance Electrical Impedance Tomography (MREIT) , 2011, SIAM Rev..

[11]  J. Greenleaf,et al.  Ultrasound-stimulated vibro-acoustic spectrography. , 1998, Science.

[12]  Habib Ammari,et al.  Mathematical models and reconstruction methods in magneto-acoustic imaging , 2009, European Journal of Applied Mathematics.

[13]  J. Sylvester,et al.  A global uniqueness theorem for an inverse boundary value problem , 1987 .

[14]  Habib Ammari,et al.  Mathematical Modeling in Photoacoustic Imaging of Small Absorbers , 2010, SIAM Rev..

[15]  A. Manduca,et al.  Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. , 1995, Science.

[16]  Lihong V. Wang,et al.  Photoacoustic imaging in biomedicine , 2006 .

[17]  Peter Kuchment,et al.  Synthetic focusing in ultrasound modulated tomography , 2009, 0901.2552.

[18]  Lihong V. Wang,et al.  Acousto-electric tomography , 2004, SPIE BiOS.

[19]  Habib Ammari,et al.  Quantitative Photo-Acoustic Imaging of Small Absorbers , 2009 .

[20]  Josselin Garnier,et al.  Resolution and stability analysis in acousto-electric imaging , 2012 .

[21]  J. Keller,et al.  Exact non-reflecting boundary conditions , 1989 .

[22]  Guillaume Bal,et al.  Quantitative thermo-acoustics and related problems , 2011 .

[23]  Peter Kuchment,et al.  Mathematics of thermoacoustic tomography , 2007, European Journal of Applied Mathematics.

[24]  Christopher Dunsby,et al.  Ultrasound-mediated optical tomography: a review of current methods , 2011, Interface Focus.

[25]  Ohin Kwon,et al.  On a Nonlinear Partial Differential Equation Arising in Magnetic Resonance Electrical Impedance Tomography , 2002, SIAM J. Math. Anal..

[26]  Hao Gao,et al.  A Hybrid Reconstruction Method for Quantitative PAT , 2013, SIAM J. Imaging Sci..

[27]  Habib Ammari,et al.  Microwave Imaging by Elastic Deformation , 2011, SIAM J. Appl. Math..

[28]  Otmar Scherzer,et al.  Impedance-Acoustic Tomography , 2008, SIAM J. Appl. Math..

[29]  Josselin Garnier,et al.  Acousto-electromagnetic Tomography , 2012, SIAM J. Appl. Math..

[30]  Jérôme Fehrenbach,et al.  Imaging by Modification: Numerical Reconstruction of Local Conductivities from Corresponding Power Density Measurements , 2009, SIAM J. Imaging Sci..

[31]  Habib Ammari,et al.  A method of biological tissues elasticity reconstruction using magnetic resonance elastography measurements , 2007 .

[32]  Adrian Nachman,et al.  Reconstruction of Planar Conductivities in Subdomains from Incomplete Data , 2010, SIAM J. Appl. Math..

[33]  Kari Astala,et al.  Calderon's inverse conductivity problem in the plane , 2006 .