A hierarchical classification of polysaccharide lyases for glycogenomics.

Carbohydrate-active enzymes face huge substrate diversity in a highly selective manner using only a limited number of available folds. They are therefore subjected to multiple divergent and convergent evolutionary events. This and their frequent modularity render their functional annotation in genomes difficult in a number of cases. In the present paper, a classification of polysaccharide lyases (the enzymes that cleave polysaccharides using an elimination instead of a hydrolytic mechanism) is shown thoroughly for the first time. Based on the analysis of a large panel of experimentally characterized polysaccharide lyases, we examined the correlation of various enzyme properties with the three levels of the classification: fold, family and subfamily. The resulting hierarchical classification, which should help annotate relevant genes in genomic efforts, is available and constantly updated at the Carbohydrate-Active Enzymes Database (http://www.cazy.org).

[1]  Brandi L. Cantarel,et al.  The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics , 2008, Nucleic Acids Res..

[2]  陈涛涛 水稻(Oryza sativa L. ssp japonica)幼苗根质膜蛋白质组分析 , 2006 .

[3]  N. Schiller,et al.  ALGINATE LYASE: review of major sources and enzyme characteristics, structure-function analysis, biological roles, and applications. , 2000, Annual review of microbiology.

[4]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[5]  Bernard Henrissat,et al.  An evolving hierarchical family classification for glycosyltransferases. , 2003, Journal of molecular biology.

[6]  N. Kyrpides,et al.  Complete genome sequence of Actinosynnema mirum type strain (101T) , 2009, Standards in genomic sciences.

[7]  S. Withers,et al.  Detailed Dissection of a New Mechanism for Glycoside Cleavage: α-1,4-Glucan Lyase† , 2003 .

[8]  N. Wicker,et al.  Secator: a program for inferring protein subfamilies from phylogenetic trees. , 2001, Molecular biology and evolution.

[9]  M. Gribskov,et al.  The Genome of Black Cottonwood, Populus trichocarpa (Torr. & Gray) , 2006, Science.

[10]  B. Henrissat,et al.  Evolutionary and mechanistic relationships between glycosidases acting on α- and β-bonds☆ , 2005 .

[11]  Laura Baxter,et al.  Phytophthora Genome Sequences Uncover Evolutionary Origins and Mechanisms of Pathogenesis , 2006, Science.

[12]  Debra Mohnen,et al.  The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. , 2009, Carbohydrate research.

[13]  Pedro M. Coutinho,et al.  Carbohydrate-active enzymes : an integrated database approach , 1999 .

[14]  A. Fouet,et al.  Bacillus anthracis cell envelope components. , 2002, Current topics in microbiology and immunology.

[15]  P. Gacesa Alginate‐modifying enzymes , 1987 .

[16]  昌木 山本,et al.  Phytophthora infestans 菌胞子の微細構造 , 1966 .

[17]  K. Novak The complete genome sequence… , 1998, Nature Medicine.

[18]  A. Fraser,et al.  Genome sequence of the enterobacterial phytopathogen Erwinia carotovora subsp. atroseptica and characterization of virulence factors. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[19]  K. Nelson,et al.  Insights into Plant Cell Wall Degradation from the Genome Sequence of the Soil Bacterium Cellvibrio japonicus , 2008, Journal of bacteriology.

[20]  B. Henrissat,et al.  Complete Genome Sequence of the Complex Carbohydrate-Degrading Marine Bacterium, Saccharophagus degradans Strain 2-40T , 2008, PLoS genetics.

[21]  B. Henrissat,et al.  Glycoside hydrolases and glycosyltransferases. Families, modules, and implications for genomics. , 2000, Plant physiology.

[22]  M Czjzek,et al.  The mechanism of substrate (aglycone) specificity in beta -glucosidases is revealed by crystal structures of mutant maize beta -glucosidase-DIMBOA, -DIMBOAGlc, and -dhurrin complexes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[23]  B. Henrissat,et al.  A Bifunctionalized Fluorogenic Tetrasaccharide as a Substrate to Study Cellulases* , 1997, The Journal of Biological Chemistry.

[24]  Othman Boaisha Burkholderia cepacia complex bacteria and their antimicrobial activity , 2012 .

[25]  S. Somerville,et al.  The role of plant cell wall polysaccharide composition in disease resistance. , 2004, Trends in plant science.

[26]  M. Gribskov,et al.  The Genome of Nectria haematococca: Contribution of Supernumerary Chromosomes to Gene Expansion , 2009, PLoS genetics.

[27]  S. Withers,et al.  An unusual mechanism of glycoside hydrolysis involving redox and elimination steps by a family 4 beta-glycosidase from Thermotoga maritima. , 2004, Journal of the American Chemical Society.

[28]  Jonathan D. G. Jones,et al.  Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans , 2009, Nature.

[29]  R. Rizzo,et al.  First report of a lyase for cepacian, the polysaccharide produced by Burkholderia cepacia complex bacteria. , 2006, Biochemical and biophysical research communications.

[30]  Lynn K. Carmichael,et al.  A Genomic View of the Human-Bacteroides thetaiotaomicron Symbiosis , 2003, Science.

[31]  K. Girish,et al.  The magic glue hyaluronan and its eraser hyaluronidase: a biological overview. , 2007, Life sciences.

[32]  J. Turkenburg,et al.  Convergent evolution sheds light on the anti-β-elimination mechanism common to family 1 and 10 polysaccharide lyases , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[33]  U. Schwarz,et al.  Novel type of murein transglycosylase in Escherichia coli , 1975, Journal of bacteriology.

[34]  Graziano Pesole,et al.  Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita , 2008, Nature Biotechnology.

[35]  H. Gilbert The Biochemistry and Structural Biology of Plant Cell Wall Deconstruction , 2010, Plant Physiology.

[36]  M. Cygler,et al.  Composite active site of chondroitin lyase ABC accepting both epimers of uronic acid. , 2008, Glycobiology.

[37]  S. Withers,et al.  An Atypical Approach Identifies TYR234 as the Key Base Catalyst in Chondroitin AC Lyase , 2006, Chembiochem : a European journal of chemical biology.

[38]  D. Bolam,et al.  Carbohydrate-binding modules: fine-tuning polysaccharide recognition. , 2004, The Biochemical journal.

[39]  A. Boraston,et al.  Structural Biology of Pectin Degradation by Enterobacteriaceae , 2008, Microbiology and Molecular Biology Reviews.

[40]  R. Rodríguez-Sanoja,et al.  Carbohydrate-binding domains: multiplicity of biological roles , 2010, Applied Microbiology and Biotechnology.

[41]  Christina A. Cuomo,et al.  Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae , 2005, Nature.

[42]  Bernard Henrissat,et al.  Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of alpha-amylase-related proteins. , 2006, Protein engineering, design & selection : PEDS.

[43]  F. Tomita,et al.  Molecular cloning of the gene encoding the di-D-Fructofuranose 1,2':2,3' dianhydride hydrolysis enzyme (DFA IIIase) from Arthrobacter sp. H65-7. , 2003, Journal of bioscience and bioengineering.

[44]  B. Henrissat,et al.  Structures and mechanisms of glycosyl hydrolases. , 1995, Structure.

[45]  Victor Markowitz,et al.  Complete genome sequence of Pedobacter heparinus type strain (HIM 762-3T) , 2009, Standards in genomic sciences.

[46]  Harry J. Gilbert,et al.  Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates. , 2010, Annual review of biochemistry.

[47]  M. Schmid,et al.  Genome-Wide Insertional Mutagenesis of Arabidopsis thaliana , 2003, Science.

[48]  N. Schiller,et al.  Alginate Lyase Promotes Diffusion of Aminoglycosides through the Extracellular Polysaccharide of Mucoid Pseudomonas aeruginosa , 1998, Antimicrobial Agents and Chemotherapy.

[49]  S. Henikoff,et al.  Amino acid substitution matrices from protein blocks. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[50]  S. Withers,et al.  Breakdown of oligosaccharides by the process of elimination. , 2006, Current opinion in chemical biology.

[51]  J. Benen,et al.  Structure and function of pectic enzymes: virulence factors of plant pathogens. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Huanming Yang,et al.  A Draft Sequence of the Rice Genome (Oryza sativa L. ssp. indica) , 2002, Science.

[53]  B. Henrissat,et al.  Complete Genome Sequence of the Complex Carbohydrate-Degrading Marine Bacterium , Saccharophagus degradans Strain 2-40 T , 2008 .

[54]  S. Withers,et al.  Nature's many mechanisms for the degradation of oligosaccharides. , 2004, Organic & biomolecular chemistry.

[55]  Miroslaw Cygler,et al.  Structural and mechanistic classification of uronic acid-containing polysaccharide lyases. , 2010, Glycobiology.

[56]  B. Henrissat,et al.  Why are there so many carbohydrate-active enzyme-related genes in plants? , 2003, Trends in plant science.

[57]  Chao Cheng,et al.  Life Span Extension by Calorie Restriction Depends on Rim15 and Transcription Factors Downstream of Ras/PKA, Tor, and Sch9 , 2007, PLoS genetics.

[58]  N. T. Blackburn,et al.  Identification of Four Families of Peptidoglycan Lytic Transglycosylases , 2001, Journal of Molecular Evolution.

[59]  C. Cooney,et al.  Polysaccharide lyases , 1986, Applied biochemistry and biotechnology.

[60]  K. Isono,et al.  Genome sequencing and analysis of Aspergillus oryzae , 2005, Nature.