Magnetic intensity affects cryptochrome-dependent responses in Arabidopsis thaliana

[1]  P. Galland,et al.  Magnetoreception in plants , 2005, Journal of Plant Research.

[2]  T. Ritz,et al.  Two Different Types of Light-Dependent Responses to Magnetic Fields in Birds , 2005, Current Biology.

[3]  J. Bouly,et al.  Light-induced Electron Transfer in Arabidopsis Cryptochrome-1 Correlates with in Vivo Function* , 2005, Journal of Biological Chemistry.

[4]  W. Wiltschko,et al.  Magnetic orientation and magnetoreception in birds and other animals , 2005, Journal of Comparative Physiology A.

[5]  S. Weber Light-driven enzymatic catalysis of DNA repair: a review of recent biophysical studies on photolyase. , 2005, Biochimica et biophysica acta.

[6]  Thorsten Ritz,et al.  Magnetic compass orientation of migratory birds in the presence of a 1.315 MHz oscillating field , 2005, Naturwissenschaften.

[7]  C. Timmel,et al.  Magnetic field effect on singlet oxygen production in a biochemical system. , 2005, Chemical communications.

[8]  Bernd Schierwater,et al.  Retinal cryptochrome in a migratory passerine bird: a possible transducer for the avian magnetic compass , 2004, Naturwissenschaften.

[9]  Henrik Mouritsen,et al.  Cryptochromes and neuronal-activity markers colocalize in the retina of migratory birds during magnetic orientation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Thorsten Ritz,et al.  Resonance effects indicate a radical-pair mechanism for avian magnetic compass , 2004, Nature.

[11]  Chentao Lin,et al.  Cryptochrome structure and signal transduction. , 2003, Annual review of plant biology.

[12]  Thorsten Ritz,et al.  Anisotropic recombination of an immobilized photoinduced radical pair in a 50-μT magnetic field: a model avian photomagnetoreceptor , 2003 .

[13]  Baldissera Giovani,et al.  Light-induced electron transfer in a cryptochrome blue-light photoreceptor , 2003, Nature Structural Biology.

[14]  Onur Güntürkün,et al.  Lateralization of magnetic compass orientation in a migratory bird , 2002, Nature.

[15]  Wolfgang Wiltschko,et al.  Magnetic compass orientation in birds and its physiological basis , 2002, Naturwissenschaften.

[16]  Paul Galland,et al.  Action Spectrum for Cryptochrome-Dependent Hypocotyl Growth Inhibition in Arabidopsis1 , 2002, Plant Physiology.

[17]  S. Kay,et al.  Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. , 2000, Science.

[18]  S. Kay,et al.  Cryptochromes Are Required for Phytochrome Signaling to the Circadian Clock but Not for Rhythmicity , 2000, Plant Cell.

[19]  R. Astumian,et al.  Biological sensing of small field differences by magnetically sensitive chemical reactions , 2000, Nature.

[20]  K. Schulten,et al.  A model for photoreceptor-based magnetoreception in birds. , 2000, Biophysical journal.

[21]  C. Timmel,et al.  Effects of weak magnetic fields on free radical recombination reactions , 1998 .

[22]  T. Mockler,et al.  Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[23]  A. Cashmore,et al.  Chimeric Proteins between cry1 and cry2 Arabidopsis Blue Light Photoreceptors Indicate Overlapping Functions and Varying Protein Stability , 1998, Plant Cell.

[24]  M. Ahmad,et al.  Mutations throughout an Arabidopsis blue-light photoreceptor impair blue-light-responsive anthocyanin accumulation and inhibition of hypocotyl elongation. , 1995, The Plant journal : for cell and molecular biology.

[25]  P. Quail,et al.  Phytochromes: photosensory perception and signal transduction , 1995, Science.

[26]  K. A. McLauchlan,et al.  TIME-RESOLVED AND MODULATION METHODS IN THE STUDY OF THE EFFECTS OF MAGNETIC-FIELDS ON THE YIELDS OF FREE-RADICAL REACTIONS , 1993 .

[27]  A. Cashmore,et al.  HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor , 1993, Nature.

[28]  K. Lohmann Magnetic compass orientation , 1993, Nature.

[29]  H. Goodman,et al.  Regulation of Flavonoid Biosynthetic Genes in Germinating Arabidopsis Seedlings. , 1992, The Plant cell.

[30]  C. Demaine,et al.  Neurophysiological properties of magnetic cells in the pigeon's visual system , 1986, Journal of Comparative Physiology A.

[31]  Klaus Schulten,et al.  Magnetic Field Effects in Chemistry and Biology , 1982 .

[32]  K. Schulten,et al.  Magnetic Field Dependence of the Geminate Recombination of Radical Ion Pairs in Polar Solvents , 1976 .

[33]  G. Rédei Single locus heterosis , 1962, Zeitschrift für Vererbungslehre.

[34]  Lili Tong PHOTORECEPTORS IN PLANT PHOTOMORPHOGENESIS TO DATE , 2003 .

[35]  W. Briggs,et al.  Photoreceptors in plant photomorphogenesis to date. Five phytochromes, two cryptochromes, one phototropin, and one superchrome. , 2001, Plant physiology.

[36]  K. Mclauchlan,et al.  Free radical mechanism for the effects of environmental electromagnetic fields on biological systems. , 1996, International journal of radiation biology.

[37]  Dr. Roswitha Wiltschko,et al.  Magnetic Orientation in Animals , 1995, Zoophysiology.

[38]  B. Brocklehurst Spin correlation in the geminate recombination of radical ions in hydrocarbons. Part 1.—Theory of the magnetic field effect , 1976 .

[39]  E. Steacie Free radical mechanisms , 1946 .