Generalizations of Loday's assembly maps for Lawvere's algebraic theories
暂无分享,去创建一个
[1] F. W. Lawvere,et al. FUNCTORIAL SEMANTICS OF ALGEBRAIC THEORIES. , 1963, Proceedings of the National Academy of Sciences of the United States of America.
[2] Boolean algebras, Morita invariance, and the algebraic K-theory of Lawvere theories , 2020, 2011.11755.
[3] Ib Madsen,et al. The cyclotomic trace and algebraic K-theory of spaces , 1993 .
[4] A. Connes,et al. Segal’s Gamma rings and universal arithmetic , 2020, 2004.08879.
[5] Francesco Matucci,et al. Presentations of generalisations of Thompson’s group V , 2016, Pacific Journal of Mathematics.
[6] Y. Neretin,et al. Diffeomorphism groups of tame Cantor sets and Thompson-like groups , 2014, Compositio Mathematica.
[7] E. Pedersen,et al. Identifying assembly maps in K- and L-theory , 2004 .
[8] P. Freyd,et al. Algebra valued functors in general and tensor products in particular , 1966 .
[9] D. Puppe,et al. Kategorien und Funktoren , 1966 .
[10] Michael A. Mandell,et al. Permutative categories, multicategories and algebraicK–theory , 2007, Algebraic & Geometric Topology.
[11] P. Ara,et al. $K$-theory of Leavitt path algebras , 2009, 0903.0056.
[12] B. Nucinkis,et al. Bredon cohomological finiteness conditions for generalisations of Thompson's groups , 2011, 1105.0189.
[13] G. Segal,et al. Categories and cohomology theories , 1974 .
[14] Søren Galatius. Stable homology of automorphism groups of free groups , 2006, math/0610216.
[15] B. Dundas,et al. Ring completion of rig categories , 2007, 0706.0531.
[16] V. E. Cazanescu. Algebraic theories , 2004 .
[17] N. Durov. New Approach to Arakelov Geometry , 2007, 0704.2030.
[18] Rings, modules, and algebras in infinite loop space theory , 2004, math/0403403.
[19] James F. Davis,et al. Spaces over a category and assembly maps in isomorphism conjectures in K- and L-theory. , 1998 .
[20] The homology of the Higman–Thompson groups , 2014, 1411.5035.
[21] Sally Popkorn,et al. A Handbook of Categorical Algebra , 2009 .
[22] S. Hu. Assembly , 2019, CIRP Encyclopedia of Production Engineering.
[23] J.-L. Loday. $K$-théorie algébrique et représentations de groupes , 1976 .
[24] Donald Yau,et al. Bimonoidal Categories, $E_n$-Monoidal Categories, and Algebraic $K$-Theory , 2021, 2107.10526.
[25] F. Quinn. Ends of Maps, I , 1979 .
[26] F. Farrell,et al. Isomorphism conjectures in algebraic $K$-theory , 1993 .
[27] Jirí Adámek,et al. Algebraic Theories: A Categorical Introduction to General Algebra , 2010 .
[28] Warren Dicks,et al. Isomorphisms of Brin-Higman-Thompson groups , 2011, 1112.1606.
[29] I. Shafarevich,et al. Abelian and nonabelian mathematics , 1991 .
[30] Markus Szymik. Twisted homological stability for extensions and automorphism groups of free nilpotent groups , 2014, 1401.5215.
[31] W. Lueck. Assembly maps , 2018, Handbook of Homotopy Theory.
[32] A. Kock. Strong functors and monoidal monads , 1972 .
[33] Tomáš Zeman. On the quotients of mapping class groups of surfaces by the Johnson subgroups , 2019, Mathematical Proceedings of the Cambridge Philosophical Society.
[34] A. Kock. Monads on symmetric monoidal closed categories , 1970 .
[35] A. Connes,et al. Absolute algebra and Segal's Γ-rings: Au dessous de Spec(Z)‾ , 2016 .
[36] Anders Kock,et al. Closed categories generated by commutative monads , 1971, Journal of the Australian Mathematical Society.
[37] F. W. Lawvere,et al. Some algebraic problems in the context of functorial semantics of algebraic theories , 1968 .
[38] Dominic R. Verity,et al. ∞-Categories for the Working Mathematician , 2018 .
[39] Markus Szymik. The rational stable homology of mapping class groups of universal nil-manifolds , 2016, Annales de l'Institut Fourier.
[40] Comparing Assembly Maps in Algebraic K -Theory , 2011 .
[41] John Power,et al. The Category Theoretic Understanding of Universal Algebra: Lawvere Theories and Monads , 2007, Computation, Meaning, and Logic.
[42] Matthew G. Brin. Higher Dimensional Thompson Groups , 2004, math/0406046.
[43] John Power,et al. Pseudo-commutative monads and pseudo-closed 2-categories , 2002 .