Laboratory-Induced Endolithic Growth in Calcarenites: Biodeteriorating Potential Assessment
暂无分享,去创建一个
M. A. Rogerio-Candelera | C. Ascaso | J. Wierzchos | A. Dionísio | C. Saiz-Jimenez | M. F. Macedo | C. Saiz-Jimenez | A. Dionísio | C. Ascaso | M. Rogerio-Candelera | J. Wierzchos | L. Láiz | A. Z. Miller | M. A. Sequeira Braga | M. Hernández-Mariné | L. Laiz | A. Maurício | A. Miller | M. Hernández‐Mariné | A. Maurício
[1] S. Golubić,et al. The lithobiontic ecological niche, with special reference to microorganisms , 1981 .
[2] J. Schneider,et al. Impact of endolithic biofilms on carbonate rock surfaces , 2002, Geological Society, London, Special Publications.
[3] Piero Tiano,et al. Biodiversity of photosynthetic micro-organisms dwelling on stone monuments , 2000 .
[4] Peter A. Wilderer,et al. Structure and function of biofilms. , 1989 .
[5] A. Z. Miller,et al. Primary bioreceptivity: A comparative study of different Portuguese lithotypes , 2006 .
[6] T. Fischer,et al. Letter. Continuous time-resolved X-ray diffraction of the biocatalyzed reduction of Mn oxide , 2008 .
[7] G. Brindley,et al. Crystal Structures of Clay Minerals and their X-ray Identification , 1982 .
[8] C. Lorenzen,et al. DETERMINATION OF CHLOROPHYLL AND PHEO‐PIGMENTS: SPECTROPHOTOMETRIC EQUATIONS1 , 1967 .
[9] Hanna-Leena Alakomi,et al. INHIBITORS OF BIOFILM DAMAGE ON MINERAL MATERIALS (BIODAM) , 2004 .
[10] Cesáreo Sáiz-Jiménez,et al. Biogeochemistry of Weathering Processes in Monuments , 1999 .
[11] Rogerio Candelera,et al. Una propuesta no invasiva para la documentación integral del arte rupestre. , 2007 .
[12] E. Friedmann,et al. Endolithic Microorganisms in the Antarctic Cold Desert , 1982, Science.
[13] Fernando M.A. Henriques,et al. Proceedings of the 7th International Congress on Deterioration and Conservation of Stone , 1992 .
[14] O. Ciferri,et al. Of microbes and art : the role of microbial communities in the degradation and protection of cultural heritage , 2000 .
[15] C. Saiz-Jimenez,et al. Bacteria isolated from rock art paintings: the case of Atlanterra shelter (south Spain). , 1999, Journal of microbiological methods.
[16] O. Guillitte,et al. Bioreceptivity : a new concept for building ecology studies , 1995 .
[17] B. Büdel,et al. Reshaping of sandstone surfaces by cryptoendolithic cyanobacteria: bioalkalization causes chemical weathering in arid landscapes , 2004 .
[18] C. Ascaso,et al. In situ microscopical diagnosis of biodeterioration processes at the convent of Santa Cruz la Real, Segovia, Spain , 2004 .
[19] M. A. R. Candelera,et al. Avances recientes en la investigación sobre patrimonio , 2008 .
[20] A. Z. Miller,et al. Reproducing stone monument photosynthetic-based colonization under laboratory conditions. , 2008, The Science of the total environment.
[21] Cesáreo Sáiz-Jiménez,et al. Biodeterioration of building materials by cyanobacteria and algae , 1991 .
[22] Maria Pia Nugari,et al. Biology in the conservation of works of art , 1993 .
[23] O. Salvadori. Characterisation of Endolithic Communities of Stone Monuments and Natural Outcrops , 2000 .
[24] Cesáreo Sáiz-Jiménez,et al. Endolithic cyanobacteria in Maastricht limestone , 1990 .
[25] K. Smalla,et al. Temperature dependence of Fe(III) and sulfate reduction rates and its effect on growth and composition of bacterial enrichments from an acidic pit lake neutralization experiment , 2005 .
[26] R. Dreesen,et al. Laboratory chamber studies and petrographical analysis as bioreceptivity assessment tools of building materials , 1995 .
[27] J. Rodrigues,et al. In situ evaluation of the biodeteriorating action of microorganisms and the effects of biocides on carbonate rock of the Jeronimos Monastery (Lisbon) , 2002 .
[28] Thomas D. Perry,et al. Epilithic and Endolithic Bacterial Communities in Limestone from a Maya Archaeological Site , 2006, Microbial Ecology.
[29] J. W. G. Lund,et al. A Manual on Methods for Measuring Primary Production in Aquatic Environments. , 1970 .
[30] C. Saiz-Jimenez,et al. Colonization of Roman tombs by calcifying cyanobacteria , 1997 .
[31] A. Z. Miller,et al. Growth of phototrophic biofilms from limestone monuments under laboratory conditions , 2009 .
[32] R. A. Bell. CRYPTOENDOLITHIC ALGAE OF HOT SEMIARID LANDS AND DESERTS , 1993 .
[33] C. Ascaso,et al. Contributions of in situ microscopy to the current understanding of stone biodeterioration. , 2005, International microbiology : the official journal of the Spanish Society for Microbiology.
[34] L. Tomaselli,et al. Phototrophic biodeteriogens on lithoid surfaces: An ecological study , 1995, Microbial Ecology.
[35] Rui J. C. Silva,et al. Primary bioreceptivity of limestones used in southern European monuments , 2010 .
[36] Giulia Caneva,et al. Ecological trends in travertine colonisation by pioneer algae and plant communities. , 2003 .
[37] N. Pace,et al. Geobiology of a microbial endolithic community in the Yellowstone geothermal environment , 2005, Nature.
[38] C. Ascasoa,et al. Study of the biogenic weathering of calcareous litharenite stones caused by lichen and endolithic microorganisms , 1998 .
[39] C. Ascaso,et al. Application of back‐scattered electron imaging to the study of the lichen‐rock interface , 1994 .
[40] J. Dixon,et al. Minerals in soil environments , 1990 .
[41] S. Arad,et al. Chelating Properties of Extracellular Polysaccharides from Chlorella spp , 1987, Applied and environmental microbiology.