Laboratory-Induced Endolithic Growth in Calcarenites: Biodeteriorating Potential Assessment

This study is aimed to assess the formation of photosynthetic biofilms on and within different natural stone materials, and to analyse their biogeophysical and biogeochemical deterioration potential. This was performed by means of artificial colonisation under laboratory conditions during 3 months. Monitoring of microbial development was performed by image analysis and biofilm biomass estimation by chlorophyll extraction technique. Microscopy investigations were carried out to study relationships between microorganisms and the mineral substrata. The model applied in this work corroborated a successful survival strategy inside endolithic microhabitat, using natural phototrophic biofilm cultivation, composed by cyanobacteria and algae, which increased intrinsic porosity by active mineral dissolution. We observed the presence of mineral-like iron derivatives (e.g. maghemite) around the cells and intracellularly and the precipitation of hausmannite, suggesting manganese transformations related to the biomineralisation.

[1]  S. Golubić,et al.  The lithobiontic ecological niche, with special reference to microorganisms , 1981 .

[2]  J. Schneider,et al.  Impact of endolithic biofilms on carbonate rock surfaces , 2002, Geological Society, London, Special Publications.

[3]  Piero Tiano,et al.  Biodiversity of photosynthetic micro-organisms dwelling on stone monuments , 2000 .

[4]  Peter A. Wilderer,et al.  Structure and function of biofilms. , 1989 .

[5]  A. Z. Miller,et al.  Primary bioreceptivity: A comparative study of different Portuguese lithotypes , 2006 .

[6]  T. Fischer,et al.  Letter. Continuous time-resolved X-ray diffraction of the biocatalyzed reduction of Mn oxide , 2008 .

[7]  G. Brindley,et al.  Crystal Structures of Clay Minerals and their X-ray Identification , 1982 .

[8]  C. Lorenzen,et al.  DETERMINATION OF CHLOROPHYLL AND PHEO‐PIGMENTS: SPECTROPHOTOMETRIC EQUATIONS1 , 1967 .

[9]  Hanna-Leena Alakomi,et al.  INHIBITORS OF BIOFILM DAMAGE ON MINERAL MATERIALS (BIODAM) , 2004 .

[10]  Cesáreo Sáiz-Jiménez,et al.  Biogeochemistry of Weathering Processes in Monuments , 1999 .

[11]  Rogerio Candelera,et al.  Una propuesta no invasiva para la documentación integral del arte rupestre. , 2007 .

[12]  E. Friedmann,et al.  Endolithic Microorganisms in the Antarctic Cold Desert , 1982, Science.

[13]  Fernando M.A. Henriques,et al.  Proceedings of the 7th International Congress on Deterioration and Conservation of Stone , 1992 .

[14]  O. Ciferri,et al.  Of microbes and art : the role of microbial communities in the degradation and protection of cultural heritage , 2000 .

[15]  C. Saiz-Jimenez,et al.  Bacteria isolated from rock art paintings: the case of Atlanterra shelter (south Spain). , 1999, Journal of microbiological methods.

[16]  O. Guillitte,et al.  Bioreceptivity : a new concept for building ecology studies , 1995 .

[17]  B. Büdel,et al.  Reshaping of sandstone surfaces by cryptoendolithic cyanobacteria: bioalkalization causes chemical weathering in arid landscapes , 2004 .

[18]  C. Ascaso,et al.  In situ microscopical diagnosis of biodeterioration processes at the convent of Santa Cruz la Real, Segovia, Spain , 2004 .

[19]  M. A. R. Candelera,et al.  Avances recientes en la investigación sobre patrimonio , 2008 .

[20]  A. Z. Miller,et al.  Reproducing stone monument photosynthetic-based colonization under laboratory conditions. , 2008, The Science of the total environment.

[21]  Cesáreo Sáiz-Jiménez,et al.  Biodeterioration of building materials by cyanobacteria and algae , 1991 .

[22]  Maria Pia Nugari,et al.  Biology in the conservation of works of art , 1993 .

[23]  O. Salvadori Characterisation of Endolithic Communities of Stone Monuments and Natural Outcrops , 2000 .

[24]  Cesáreo Sáiz-Jiménez,et al.  Endolithic cyanobacteria in Maastricht limestone , 1990 .

[25]  K. Smalla,et al.  Temperature dependence of Fe(III) and sulfate reduction rates and its effect on growth and composition of bacterial enrichments from an acidic pit lake neutralization experiment , 2005 .

[26]  R. Dreesen,et al.  Laboratory chamber studies and petrographical analysis as bioreceptivity assessment tools of building materials , 1995 .

[27]  J. Rodrigues,et al.  In situ evaluation of the biodeteriorating action of microorganisms and the effects of biocides on carbonate rock of the Jeronimos Monastery (Lisbon) , 2002 .

[28]  Thomas D. Perry,et al.  Epilithic and Endolithic Bacterial Communities in Limestone from a Maya Archaeological Site , 2006, Microbial Ecology.

[29]  J. W. G. Lund,et al.  A Manual on Methods for Measuring Primary Production in Aquatic Environments. , 1970 .

[30]  C. Saiz-Jimenez,et al.  Colonization of Roman tombs by calcifying cyanobacteria , 1997 .

[31]  A. Z. Miller,et al.  Growth of phototrophic biofilms from limestone monuments under laboratory conditions , 2009 .

[32]  R. A. Bell CRYPTOENDOLITHIC ALGAE OF HOT SEMIARID LANDS AND DESERTS , 1993 .

[33]  C. Ascaso,et al.  Contributions of in situ microscopy to the current understanding of stone biodeterioration. , 2005, International microbiology : the official journal of the Spanish Society for Microbiology.

[34]  L. Tomaselli,et al.  Phototrophic biodeteriogens on lithoid surfaces: An ecological study , 1995, Microbial Ecology.

[35]  Rui J. C. Silva,et al.  Primary bioreceptivity of limestones used in southern European monuments , 2010 .

[36]  Giulia Caneva,et al.  Ecological trends in travertine colonisation by pioneer algae and plant communities. , 2003 .

[37]  N. Pace,et al.  Geobiology of a microbial endolithic community in the Yellowstone geothermal environment , 2005, Nature.

[38]  C. Ascasoa,et al.  Study of the biogenic weathering of calcareous litharenite stones caused by lichen and endolithic microorganisms , 1998 .

[39]  C. Ascaso,et al.  Application of back‐scattered electron imaging to the study of the lichen‐rock interface , 1994 .

[40]  J. Dixon,et al.  Minerals in soil environments , 1990 .

[41]  S. Arad,et al.  Chelating Properties of Extracellular Polysaccharides from Chlorella spp , 1987, Applied and environmental microbiology.