agriwater: An R package for spatial modelling of energy balance and actual evapotranspiration using satellite images and agrometeorological data

Abstract Aiming to subsidize the rational water resources management, an R package called “agriwater” was created in order to obtain the energy balance on the soil and actual evapotranspiration using satellite imagery and agrometeorological data. This package apply the Simple Algorithm for Evapotranspiration Retrieving - SAFER to calculate the evapotranspiration fraction E T r (or E T A E T 0 −1), actual evapotranspiration ( E T A ) and latent heat flux (λE); the Slob equation calculate the net radiation ( R N ); ground heat flux (G) is modeled from R N ; and the sensible heat flux (H) is retrieved as the residue of the energy balance equation. Landsat-8 (with and without thermal bands), Sentinel-2 and MODIS digital images can be used. Results are presented in raster format and can be post-processed by GIS analysis or anothers R procedures. A study case using Sentinel-2 images and agrometeorological data of a semiarid area from Brazil was performed. The requirements and conditions for use of the package are explained.

[1]  Luis S. Pereira,et al.  Satellite-based evapotranspiration of a super-intensive olive orchard: Application of METRIC algorithms , 2014 .

[2]  J. Hunt,et al.  Biophysical regulation of net ecosystem carbon dioxide exchange over a temperate desert steppe in Inner Mongolia, China , 2011 .

[3]  Francesco Vuolo,et al.  Capability of Sentinel-2 data for estimating maximum evapotranspiration and irrigation requirements for tomato crop in Central Italy , 2018, Remote Sensing of Environment.

[4]  A. Holtslag,et al.  A remote sensing surface energy balance algorithm for land (SEBAL)-1. Formulation , 1998 .

[5]  G. Senay,et al.  Evaluating Landsat 8 evapotranspiration for water use mapping in the Colorado River Basin , 2015 .

[6]  Wim G.M. Bastiaanssen,et al.  Remote sensing for irrigated agriculture: examples from research and possible applications , 2000 .

[7]  B. Markham,et al.  Revised Landsat-5 TM radiometric calibration procedures and postcalibration dynamic ranges , 2003, IEEE Trans. Geosci. Remote. Sens..

[8]  I. A. Walter,et al.  The ASCE standardized reference evapotranspiration equation , 2005 .

[9]  J.-Y. Parlange,et al.  Increasing Evapotranspiration from the Conterminous United States , 2004 .

[10]  V. P. D. Silva,et al.  Water requirements of irrigated mango orchards in northeast Brazil , 2003 .

[11]  Paul J. Kramer,et al.  Physiology of Woody Plants , 1983 .

[12]  G. Kumar,et al.  Biomass and biomass water use efficiency in oilseed crop (Brassica juncea L.) under semi-arid microenvironments , 2013 .

[13]  W. Werf,et al.  Assessment of crop growth and water productivity for five C3 species in semi-arid Inner Mongolia , 2013 .

[14]  Pablo J. Zarco-Tejada,et al.  Impact of the spatial resolution on the energy balance components on an open-canopy olive orchard , 2019, Int. J. Appl. Earth Obs. Geoinformation.

[15]  Jiquan Chen,et al.  Energy balance and partition in Inner Mongolia steppe ecosystems with different land use types , 2009 .

[16]  Fernando França da Cunha,et al.  Crop NDVI Monitoring Based on Sentinel 1 , 2019, Remote. Sens..

[17]  Janice F. Leivas,et al.  Use of MODIS Images to Quantify the Radiation and Energy Balances in the Brazilian Pantanal , 2015, Remote. Sens..

[18]  J. A. Schell,et al.  Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation. [Great Plains Corridor] , 1973 .

[19]  Praveena Krishnan,et al.  Energy exchange and evapotranspiration over two temperate semi-arid grasslands in North America , 2012 .

[20]  S. Running,et al.  Regional evaporation estimates from flux tower and MODIS satellite data , 2007 .

[21]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[22]  Marcos Adami,et al.  Índices de vegetação Modis aplicados na discriminação de áreas de soja , 2012 .

[23]  Vijay P. Singh,et al.  Evaluation of three complementary relationship evapotranspiration models by water balance approach to estimate actual regional evapotranspiration in different climatic regions , 2005 .

[24]  Camilo Daleles Rennó,et al.  Remote sensing for irrigation water management in the semi-arid Northeast of Brazil , 2009 .

[25]  Fernando Braz Tangerino Hernandez,et al.  Energy balance with Landsat images in irrigated central pivots with corn crop in the São Paulo State, Brazil , 2014, Remote Sensing.

[26]  G. Sun,et al.  Evapotranspiration and soil water relationships in a range of disturbed and undisturbed ecosystems in the semi-arid Inner Mongolia, China , 2011 .

[27]  Janice F. Leivas,et al.  Energy and mass transfer parameters in a brazilian semi-arid ecosystem under different thermohydrological conditions , 2015 .

[28]  Wim G.M. Bastiaanssen,et al.  Reviewing SEBAL input parameters for assessing evapotranspiration and water productivity for the Low - Middle Sao Francisco River basin, Brazil : part A : calibration and validation , 2009 .

[29]  Antônio H. de C. Teixeira,et al.  Determining Regional Actual Evapotranspiration of Irrigated Crops and Natural Vegetation in the São Francisco River Basin (Brazil) Using Remote Sensing and Penman-Monteith Equation , 2010, Remote. Sens..

[30]  S. Taghvaeian,et al.  Determining Large Scale Actual Evapotranspiration Using Agro- Meteorological and Remote Sensing Data in the Northwest of Sao Paulo State, Brazil , 2014 .

[31]  Janice F. Leivas,et al.  Application of agrometeorological spectral model in rice area in southern Brazil , 2015, SPIE Remote Sensing.

[32]  W. J. Kramber,et al.  Automated Calibration of the METRIC‐Landsat Evapotranspiration Process , 2013 .

[33]  R. Manzione,et al.  Large-Scale Spatial Modeling of Crop Coefficient and Biomass Production in Agroecosystems in Southeast Brazil , 2018 .

[34]  U. Surendran,et al.  Effect of drip fertigation and polythene mulching on growth and productivity of coconut (Cocos nucifera L.), water, nutrient use efficiency and economic benefits , 2017 .

[35]  Wim G.M. Bastiaanssen,et al.  Reviewing SEBAL input parameters for assessing evapotranspiration and water productivity for the Low-Middle São Francisco River basin, Brazil: Part B: Application to the regional scale , 2009 .

[36]  J. Monteith SOLAR RADIATION AND PRODUCTIVITY IN TROPICAL ECOSYSTEMS , 1972 .

[37]  H. Barbosa,et al.  Analysis of the NDVI temporal dynamics in semi-arid ecosystems: Brazilian Caatinga and African Western Sahel , 2011 .

[38]  Sun Xiaomin,et al.  Partitioning of evapotranspiration and its controls in four grassland ecosystems: Application of a two-source model , 2009 .

[39]  P. Gowda,et al.  Utility of remote sensing-based surface energy balance models to track water stress in rain-fed switchgrass under dry and wet conditions , 2017 .

[40]  T. Sauer,et al.  Latent heat in soil heat flux measurements , 2010 .

[41]  James P. Verdin,et al.  Actual Evapotranspiration (Water Use) Assessment of the Colorado River Basin at the Landsat Resolution Using the Operational Simplified Surface Energy Balance Model , 2013, Remote. Sens..

[42]  Susan L. Ustin,et al.  Derivation of phenological metrics by function fitting to time-series of Spectral Shape Indexes AS1 and AS2: Mapping cotton phenological stages using MODIS time series , 2012 .

[43]  J. Stricker,et al.  Evaporation of grass under non-restricted soil moisture conditions , 2000 .

[44]  R. Tateishi,et al.  Relationships between percent vegetation cover and vegetation indices , 1998 .

[45]  R. Manzione,et al.  Combining remotely sensed actual evapotranspiration and GIS analysis for groundwater level modeling , 2019, Environmental Earth Sciences.

[46]  Santos Henrique Brant Dias,et al.  New approach to determining the surface temperature without thermal band of satellites , 2019, European Journal of Agronomy.

[47]  Richard G. Allen,et al.  Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Model , 2007 .

[48]  Gabriel B. Senay,et al.  Satellite-based water use dynamics using historical Landsat data (1984-2014) in the southwestern United States , 2017 .

[49]  Liu Huizhi,et al.  Seasonal and Interannual Variations of Evapotranspiration and Energy Exchange over Different Land Surfaces in a Semiarid Area of China , 2012 .

[50]  L. M. M. D. Oliveira,et al.  Evapotranspiração e estimativa da água consumida em perímetro irrigado do Semiárido brasileiro por sensoriamento remoto , 2012 .

[51]  Wim G.M. Bastiaanssen,et al.  Analysis of energy fluxes and vegetation-atmosphere parameters in irrigated and natural ecosystems of semi-arid Brazil , 2008 .

[52]  Feng Zhang,et al.  Evapotranspiration and crop coefficient for a temperate desert steppe ecosystem using eddy covariance in Inner Mongolia, China , 2012 .

[53]  Simona Consoli,et al.  Corrected surface energy balance to measure and model the evapotranspiration of irrigated orange orchards in semi-arid Mediterranean conditions , 2012, Irrigation Science.

[54]  W. Bastiaanssen,et al.  A new crop yield forecasting model based on satellite measurements applied across the Indus Basin, Pakistan , 2003 .

[55]  Fernando Braz Tangerino Hernandez,et al.  Large-scale radiation and energy balances with Landsat 8 images and agrometeorological data in the Brazilian semiarid region , 2017 .

[56]  Ling Tong,et al.  Irrigation water productivity is more influenced by agronomic practice factors than by climatic factors in Hexi Corridor, Northwest China , 2016, Scientific Reports.

[57]  A. Singels,et al.  Water relations of two contrasting sugarcane genotypes , 2014 .

[58]  T. Carlson,et al.  On the relation between NDVI, fractional vegetation cover, and leaf area index , 1997 .

[59]  Janice F. Leivas,et al.  Large-Scale Water Productivity Assessments with MODIS Images in a Changing Semi-Arid Environment: A Brazilian Case Study , 2013, Remote. Sens..

[60]  TEMPORAL DYNAMICS OF CLIMATOLOGICAL PARAMETERS AND HYDRIC BALANCE IN THE MANAGEMENT OF AGRICULTURAL CROPS , 2018, Engenharia Agrícola.

[61]  A. Teixeira,et al.  Water productivity assessments for dwarf coconut by using Landsat 8 images and agrometeorological data , 2019, ISPRS Journal of Photogrammetry and Remote Sensing.