Refinement and field validation of a biotic ligand model predicting acute copper toxicity to Daphnia magna.

[1]  J. J. Morgan,et al.  Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters , 1970 .

[2]  T. Shaw,et al.  The toxicity of some forms of copper to rainbow trout , 1974 .

[3]  U. Borgmann,et al.  Complexation and toxicity of copper and the free metal bioassay technique , 1983 .

[4]  C. Wood,et al.  Effects of an acute silver challenge on survival, silver distribution and ionoregulation within developing rainbow trout eggs (Oncorhynchus mykiss). , 2000, Aquatic toxicology.

[5]  G. K. Pagenkopf Gill surface interaction model for trace-metal toxicity to fishes: role of complexation, pH, and water hardness , 1983 .

[6]  F. J. Stevenson,et al.  Complexation of Cu(II) with a soil humic acid: Response characteristics of the Cu(II) ion-selective electrode and ligand concentration effects , 1986 .

[7]  E. Thurman,et al.  Complexation of copper by aquatic humic substances from different environments , 1983 .

[8]  R. Playle,et al.  The Bioavailability and Toxicity of Aluminum in Aquatic Environments , 1999 .

[9]  S. Luoma Reassessment of metals criteria for aquatic life protection , 1997 .

[10]  S. Cabaniss,et al.  Copper binding by dissolved organic matter: I. Suwannee River fulvic acid equilibria , 1988 .

[11]  J G Hering,et al.  Humic acid complexation of calcium and copper. , 1988, Environmental science & technology.

[12]  R. W. Andrew,et al.  Effects of inorganic complexing on the toxicity of copper to Daphnia magna , 1977 .

[13]  H. Allen,et al.  Effect of kinetics of complexation by humic acid on toxicity of copper to Ceriodaphnia dubia , 1999 .

[14]  D. Dixon,et al.  Copper accumulation on gills of fathead minnows: Influence of water hardness, complexation and pH of the gill micro‐environment , 1992 .

[15]  J. Meador THE INTERACTION OF PH, DISSOLVED ORGANIC CARBON, AND TOTAL COPPER IN THE DETERMINATION OF IONIC COPPER AND TOXICITY , 1991 .

[16]  F. Morel Principles of Aquatic Chemistry , 1983 .

[17]  J. Buffle,et al.  Chemical and Biological Regulation of Aquatic Systems , 1994 .

[18]  R. Blust,et al.  Effect of hydrogen ions and inorganic complexing on the uptake of copper by the brine shrimp Artemia franciscana , 1991 .

[19]  B.-P. Elendt,et al.  Trace nutrient deficiency in Daphnia magna cultured in standard medium for toxicity testing. Effects of the optimization of culture conditions on life history parameters of D. magna , 1990 .

[20]  M. A. Hamilton,et al.  Trimmed Spearman-Karber Method for Estimating Median Lethal Concentrations in Toxicity Bioassays , 1977 .

[21]  H. Allen,et al.  The importance of trace metal speciation to water quality criteria , 1996 .

[22]  P. Paquin,et al.  Biotic ligand model of the acute toxicity of metals. 2. Application to acute copper toxicity in freshwater fish and Daphnia , 2001, Environmental toxicology and chemistry.

[23]  E. Tipping,et al.  A unifying model of cation binding by humic substances , 1992 .

[24]  M. Schubauer-Berigan,et al.  pH‐Dependent toxicity of Cd, Cu, Ni, Pb and Zn to Ceriodaphnia dubia, Pimephales promelas, Hyalella azteca and Lumbriculus variegatus , 1993 .

[25]  E. Tipping Modelling ion binding by humic acids , 1993 .

[26]  D. Baird,et al.  Influence of genetic and environmental factors on the tolerance of Daphnia magna Straus to essential and non-essential metals. , 1998 .

[27]  Colin R. Janssen,et al.  A biotic ligand model predicting acute copper toxicity for Daphnia magna: the effects of calcium, magnesium, sodium, potassium, and pH. , 2002, Environmental science & technology.

[28]  P. Campbel Interactions between trace metals and aquatic organisms : A critique of the Free-ion Activity Model , 1995 .

[29]  R. W. Winner Bioaccumulation and toxicity of copper as affected by interactions between humic acid and water hardness , 1985 .

[30]  Herbert E. Allen,et al.  Influence of dissolved organic matter on the toxicity of copper to Ceriodaphnia dubia: Effect of complexation kinetics , 1999 .

[31]  J. Lipton,et al.  Relative importance of calcium and magnesium in hardness‐based modification of copper toxicity , 2000 .

[32]  D. Turner,et al.  Metal speciation and bioavailability in aquatic systems , 1995 .

[33]  E. Tipping WHAM—a chemical equilibrium model and computer code for waters, sediments, and soils incorporating a discrete site/electrostatic model of ion-binding by humic substances , 1994 .

[34]  P. Paquin,et al.  Biotic ligand model of the acute toxicity of metals. 1. Technical Basis , 2001, Environmental toxicology and chemistry.

[35]  M. F. L'annunziata,et al.  Evaluation of the Mass Spectral Analysis of Soil Inositol, Inositol Phosphates, and Related Compounds 1 , 1976 .

[36]  F. J. Stevenson Stability constants of Cu/sup 2 +/, Pb/sup 2 +/, and Cd/sup 2 +/ complexes with humic acids , 1976 .

[37]  P. Schindler,et al.  The interaction of Cu(II) ion with humic acid , 1982 .

[38]  S. Cabaniss,et al.  Copper binding by dissolved organic matter: II. Variation in type and source of organic matter , 1988 .

[39]  S. Markich,et al.  Evaluation of the free ion activity model of metal-organism interaction: extension of the conceptual model. , 2000, Aquatic toxicology.

[40]  E. Tipping,et al.  Testing a humic speciation model by titration of copper-amended natural waters , 1998 .

[41]  S. Goldberg,et al.  Chemical equilibrium and reaction models , 1995 .

[42]  R. Playle,et al.  Copper and Cadmium Binding to Fish Gills: Estimates of Metal–Gill Stability Constants and Modelling of Metal Accumulation , 1993 .

[43]  Duane A. Benoit,et al.  The effects of water chemistry on the toxicity of copper to fathead minnows , 1996 .

[44]  Colin R. Janssen,et al.  Uncertainties in the Environmental Risk Assessment of Metals , 2000 .