STABILIZED FINITE ELEMENT METHOD FOR INCOMPRESSIBLE VISCOUS FLUID FLOWS USING LOW-ORDER MIXED INTERPOLATIONS

本論文は, 流速双1次/圧力区分0次 (Q1/P0) の混合補間要素を用いた, 非圧縮粘性流れ解析のための高精度な安定化有限要素法の提案を行うものである. 本手法は, 空間の離散化に対してSUPG法と圧力安定化行列を用い, 時間の離散化に対しては修正準陰解法を用いるものである. 本手法は, 従来提案されている代表的な安定化有限要素法であるGLS法やSUPG/PSPG法と理論的に等価であり, それらに比べてより簡便に安定化が図れ, かつ高精度で計算効率に優れた手法であることを, 代表的な数値解析例に対する比較計算により示している.

[1]  L. Franca,et al.  Stabilized Finite Element Methods , 1993 .

[2]  B. Cantwell,et al.  An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder , 1983, Journal of Fluid Mechanics.

[3]  A. Mizukami Some integration formulas for a four-node isoparametric element , 1986 .

[4]  Tayfun E. Tezduyar,et al.  TIME-ACCURATE INCOMPRESSIBLE FLOW COMPUTATIONS WITH QUADRILATERAL VELOCITY-PRESSURE ELEMENTS* , 1991 .

[5]  Thomas J. R. Hughes,et al.  The Stokes problem with various well-posed boundary conditions - Symmetric formulations that converge for all velocity/pressure spaces , 1987 .

[6]  Thomas J. R. Hughes,et al.  A new finite element formulation for computational fluid dynamics: IX. Fourier analysis of space-time Galerkin/least-squares algorithms , 1991 .

[7]  J. Donea A Taylor–Galerkin method for convective transport problems , 1983 .

[8]  T. Hughes,et al.  The Galerkin/least-squares method for advective-diffusive equations , 1988 .

[9]  Philip M. Gresho,et al.  On the theory of semi‐implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part 1: Theory , 1990 .

[10]  S. Mittal,et al.  Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements , 1992 .

[11]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .

[12]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[13]  U. Ghia,et al.  High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .

[14]  David J. Silvester,et al.  Stabilised bilinear—constant velocity—pressure finite elements for the conjugate gradient solution of the Stokes problem , 1990 .