Chaos around holographic Regge trajectories

[1]  P. Basu,et al.  Analytic nonintegrability in string theory , 2011, 1105.2540.

[2]  A. Ghosh,et al.  Integrability lost: Chaotic dynamics of classical strings on a confining holographic background , 2011, 1103.4101.

[3]  P. Basu,et al.  Chaos rules out integrability of strings on AdS5×T1,1 , 2011, 1103.4107.

[4]  L. P. Pando Zayas,et al.  Chaos in the gauge/gravity correspondence , 2010, 1007.0277.

[5]  D. Blázquez-Sanz,et al.  On Hamiltonian potentials with cuartic polynomial normal variational equations , 2008, 0809.0135.

[6]  C. Simó,et al.  Integrability of hamiltonian systems and differential Galois groups of higher variational equations , 2007 .

[7]  D. Blázquez-Sanz,et al.  Non-integrability of some hamiltonians with rational potentials , 2006, math-ph/0610010.

[8]  L. P. Zayas,et al.  Wilson loop. Regge trajectory, and hadron masses in a Yang-Mills theory from semiclassical strings , 2004, hep-th/0409205.

[9]  D. Vaman,et al.  Regge trajectories revisited in the gauge/string correspondence , 2003, hep-th/0311190.

[10]  S. L. Ziglin An Analytic Proof of the Nonintegrability of the ABC-flow for A=B=C , 2003 .

[11]  J. Morales-Ruiz Kovalevskaya, Liapounov, Painlevé, Ziglin and the Differential Galois Theory , 2003 .

[12]  J. Maldacena,et al.  Strings in flat space and pp waves from N = 4 Super Yang Mills , 2002 .

[13]  A. Polyakov,et al.  A semi-classical limit of the gauge/string correspondence , 2002, hep-th/0204051.

[14]  J. Maldacena,et al.  Strings in flat space and pp waves from ${\cal N}=4$ Super Yang Mills , 2002, hep-th/0202021.

[15]  E. Ott Chaos in Dynamical Systems: Contents , 2002 .

[16]  J. Sprott Chaos and time-series analysis , 2001 .

[17]  A. Goriely Integrability and Nonintegrability of Dynamical Systems , 2001 .

[18]  M. Szydłowski,et al.  Integrability and Non-Integrability of Planar Hamiltonian Systems of Cosmological Origin , 2001 .

[19]  J. Maldacena,et al.  Towards the large N limit of pure Nu = 1 super Yang-Mills theory. , 2000, Physical review letters.

[20]  Juan José Morales Ruiz,et al.  Galosian Obstructions to Integrability of Hamiltonian Systems II , 2001 .

[21]  J. Ramis,et al.  A Note on the Non-Integrability of Some Hamilitonian Systems with a Homogeneous Potential , 2001 .

[22]  J. Ramis,et al.  GALOISIAN OBSTRUCTIONS TO INTEGRABILITY OF HAMILTONIAN SYSTEMS II ∗ , 2001 .

[23]  Stringy Confining Wilson Loops , 2000 .

[24]  Robert C. Hilborn,et al.  Chaos and Nonlinear Dynamics , 2000 .

[25]  I. Klebanov,et al.  Supergravity and a confining gauge theory: Duality cascades and χSB-resolution of naked singularities , 2000, hep-th/0007191.

[26]  Y. Kinar,et al.  potential from strings in curved space-time – classical results ☆ , 2000 .

[27]  J. Maldacena,et al.  Large N Field Theories, String Theory and Gravity , 1999, hep-th/9905111.

[28]  Stringy Conning Wilson Loops , 2000 .

[29]  Juan José Morales Ruiz,et al.  Differential Galois Theory and Non-Integrability of Hamiltonian Systems , 1999 .

[30]  Y. Kinar,et al.  $Q \bar{Q}$ Potential from Strings in Curved Spacetime - Classical Results , 1998, hep-th/9811192.

[31]  E. Witten Anti-de Sitter space and holography , 1998, hep-th/9802150.

[32]  A. Polyakov,et al.  Gauge Theory Correlators from Non-Critical String Theory , 1998, hep-th/9802109.

[33]  J. Maldacena The Large-N Limit of Superconformal Field Theories and Supergravity , 1997, hep-th/9711200.

[34]  Volkov,et al.  Non-Abelian Bogomol{close_quote}nyi-Prasad-Sommerfield Monopoles in {ital N} =4 Gauged Supergravity , 1997 .

[35]  A. Chamseddine,et al.  Non-Abelian BPS Monopoles in N=4 Gauged Supergravity , 1997, hep-th/9707176.

[36]  Robert C. Hilborn,et al.  Chaos And Nonlinear Dynamics: An Introduction for Scientists and Engineers , 1994 .

[37]  Carles Simó,et al.  Picard-Vessiot Theory and Ziglin's Theorem , 1994 .

[38]  Xenia de la Ossa,et al.  Comments on Conifolds , 1990 .

[39]  A. Fomenko Integrability and Nonintegrability in Geometry and Mechanics , 1988 .

[40]  Jerald J. Kovacic,et al.  An Algorithm for Solving Second Order Linear Homogeneous Differential Equations , 1986, J. Symb. Comput..

[41]  Mw Hirsch,et al.  Chaos In Dynamical Systems , 2016 .

[42]  S. L. Ziglin Branching of solutions and nonexistence of first integrals in Hamiltonian mechanics. I , 1982 .

[43]  F. Wilczek,et al.  Asymptotically free gauge theories. I , 1973 .