Chaos around holographic Regge trajectories
暂无分享,去创建一个
A. Ghosh | P. Basu | D. Das | L. P. Zayas | Pallab Basu | Archisman Ghosh
[1] P. Basu,et al. Analytic nonintegrability in string theory , 2011, 1105.2540.
[2] A. Ghosh,et al. Integrability lost: Chaotic dynamics of classical strings on a confining holographic background , 2011, 1103.4101.
[3] P. Basu,et al. Chaos rules out integrability of strings on AdS5×T1,1 , 2011, 1103.4107.
[4] L. P. Pando Zayas,et al. Chaos in the gauge/gravity correspondence , 2010, 1007.0277.
[5] D. Blázquez-Sanz,et al. On Hamiltonian potentials with cuartic polynomial normal variational equations , 2008, 0809.0135.
[6] C. Simó,et al. Integrability of hamiltonian systems and differential Galois groups of higher variational equations , 2007 .
[7] D. Blázquez-Sanz,et al. Non-integrability of some hamiltonians with rational potentials , 2006, math-ph/0610010.
[8] L. P. Zayas,et al. Wilson loop. Regge trajectory, and hadron masses in a Yang-Mills theory from semiclassical strings , 2004, hep-th/0409205.
[9] D. Vaman,et al. Regge trajectories revisited in the gauge/string correspondence , 2003, hep-th/0311190.
[10] S. L. Ziglin. An Analytic Proof of the Nonintegrability of the ABC-flow for A=B=C , 2003 .
[11] J. Morales-Ruiz. Kovalevskaya, Liapounov, Painlevé, Ziglin and the Differential Galois Theory , 2003 .
[12] J. Maldacena,et al. Strings in flat space and pp waves from N = 4 Super Yang Mills , 2002 .
[13] A. Polyakov,et al. A semi-classical limit of the gauge/string correspondence , 2002, hep-th/0204051.
[14] J. Maldacena,et al. Strings in flat space and pp waves from ${\cal N}=4$ Super Yang Mills , 2002, hep-th/0202021.
[15] E. Ott. Chaos in Dynamical Systems: Contents , 2002 .
[16] J. Sprott. Chaos and time-series analysis , 2001 .
[17] A. Goriely. Integrability and Nonintegrability of Dynamical Systems , 2001 .
[18] M. Szydłowski,et al. Integrability and Non-Integrability of Planar Hamiltonian Systems of Cosmological Origin , 2001 .
[19] J. Maldacena,et al. Towards the large N limit of pure Nu = 1 super Yang-Mills theory. , 2000, Physical review letters.
[20] Juan José Morales Ruiz,et al. Galosian Obstructions to Integrability of Hamiltonian Systems II , 2001 .
[21] J. Ramis,et al. A Note on the Non-Integrability of Some Hamilitonian Systems with a Homogeneous Potential , 2001 .
[22] J. Ramis,et al. GALOISIAN OBSTRUCTIONS TO INTEGRABILITY OF HAMILTONIAN SYSTEMS II ∗ , 2001 .
[23] Stringy Confining Wilson Loops , 2000 .
[24] Robert C. Hilborn,et al. Chaos and Nonlinear Dynamics , 2000 .
[25] I. Klebanov,et al. Supergravity and a confining gauge theory: Duality cascades and χSB-resolution of naked singularities , 2000, hep-th/0007191.
[26] Y. Kinar,et al. potential from strings in curved space-time – classical results ☆ , 2000 .
[27] J. Maldacena,et al. Large N Field Theories, String Theory and Gravity , 1999, hep-th/9905111.
[28] Stringy Conning Wilson Loops , 2000 .
[29] Juan José Morales Ruiz,et al. Differential Galois Theory and Non-Integrability of Hamiltonian Systems , 1999 .
[30] Y. Kinar,et al. $Q \bar{Q}$ Potential from Strings in Curved Spacetime - Classical Results , 1998, hep-th/9811192.
[31] E. Witten. Anti-de Sitter space and holography , 1998, hep-th/9802150.
[32] A. Polyakov,et al. Gauge Theory Correlators from Non-Critical String Theory , 1998, hep-th/9802109.
[33] J. Maldacena. The Large-N Limit of Superconformal Field Theories and Supergravity , 1997, hep-th/9711200.
[34] Volkov,et al. Non-Abelian Bogomol{close_quote}nyi-Prasad-Sommerfield Monopoles in {ital N} =4 Gauged Supergravity , 1997 .
[35] A. Chamseddine,et al. Non-Abelian BPS Monopoles in N=4 Gauged Supergravity , 1997, hep-th/9707176.
[36] Robert C. Hilborn,et al. Chaos And Nonlinear Dynamics: An Introduction for Scientists and Engineers , 1994 .
[37] Carles Simó,et al. Picard-Vessiot Theory and Ziglin's Theorem , 1994 .
[38] Xenia de la Ossa,et al. Comments on Conifolds , 1990 .
[39] A. Fomenko. Integrability and Nonintegrability in Geometry and Mechanics , 1988 .
[40] Jerald J. Kovacic,et al. An Algorithm for Solving Second Order Linear Homogeneous Differential Equations , 1986, J. Symb. Comput..
[41] Mw Hirsch,et al. Chaos In Dynamical Systems , 2016 .
[42] S. L. Ziglin. Branching of solutions and nonexistence of first integrals in Hamiltonian mechanics. I , 1982 .
[43] F. Wilczek,et al. Asymptotically free gauge theories. I , 1973 .