Performance bounds for the rate-constrained universal decentralized estimators in sensor networks

We consider the decentralized estimation of a noise corrupted deterministic parameter using a bandwidth constrained sensor network with a fusion center (FC). The sensor noises are assumed to be additive, zero mean, and spatially uncorrelated. Assuming that each sensor sends to the FC a one-bit message per sample, we derive a Cramer-Rao lower bound (CRLB) for the rate-constrained decentralized estimators using the noise probability distribution functions (pdfs) and local quantization rules. We then optimize this CRLB with respect to the noise pdfs and local quantization rules to obtain a lower bound for the mean squared error (MSE) performance of a class of universal decentralized estimators [Z-Q. Luo (2004), A. Ribeiro et al. (2004)]. Our results show that if the noises and the parameter to be estimated both have finite range in [-U, U], then the minimum MSE performance of any rate-constrained universal decentralized estimator is at least in the order of U/sup 2//(4K), where K is the total number sensors. This bound implies that the recently proposed universal decentralized estimators [Z.-Q. Luo (2004), A. Ribeiro et al. (2004)] are optimal up to a constant factor (of 16).

[1]  Zhi-Quan Luo,et al.  Decentralized estimation in an inhomogeneous environment , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[2]  A. Willsky,et al.  Combining and updating of local estimates and regional maps along sets of one-dimensional tracks , 1982 .

[3]  John N. Tsitsiklis,et al.  Data fusion with minimal communication , 1994, IEEE Trans. Inf. Theory.

[4]  Akbar M. Sayeed,et al.  Optimal Distributed Detection Strategies for Wireless Sensor Networks , 2004 .

[5]  Ian F. Akyildiz,et al.  Wireless sensor networks: a survey , 2002, Comput. Networks.

[6]  D. Teneketzis,et al.  Coordinator , 2020, EuroPLoP.

[7]  RibeiroA. Bandwidth-constrained distributed estimation for wireless sensor Networks-part I , 2006 .

[8]  Lang Tong,et al.  Estimation Over Deterministic Multiaccess Channels , 2004 .

[9]  Pramod K. Varshney,et al.  Distributed Bayesian hypothesis testing with distributed data fusion , 1988, IEEE Trans. Syst. Man Cybern..

[10]  Haralabos C. Papadopoulos,et al.  Sequential signal encoding from noisy measurements using quantizers with dynamic bias control , 2001, IEEE Trans. Inf. Theory.

[11]  Vasileios Megalooikonomou,et al.  Quantizer design for distributed estimation with communication constraints and unknown observation statistics , 2000, IEEE Trans. Commun..

[12]  Zhi-Quan Luo,et al.  Universal decentralized estimation in a bandwidth constrained sensor network , 2005, IEEE Transactions on Information Theory.

[13]  Zhi-Quan Luo,et al.  An isotropic universal decentralized estimation scheme for a bandwidth constrained ad hoc sensor network , 2005, IEEE J. Sel. Areas Commun..

[14]  Andrea J. Goldsmith,et al.  Joint estimation in sensor networks under energy constraints , 2004, 2004 First Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks, 2004. IEEE SECON 2004..

[15]  Andrea J. Goldsmith,et al.  Energy-constrained modulation optimization , 2005, IEEE Transactions on Wireless Communications.

[16]  Alejandro Ribeiro,et al.  Bandwidth-constrained distributed estimation for wireless sensor Networks-part I: Gaussian case , 2006, IEEE Transactions on Signal Processing.