Liquid Aluminum: Atomic diffusion and viscosity from ab initio molecular dynamics

We present a study of dynamic properties of liquid aluminum using density-functional theory within the local-density (LDA) and generalized gradient (GGA) approximations. We determine the temperature dependence of the self-diffusion coefficient as well the viscosity using direct methods. Comparisons with experimental data favor the LDA approximation to compute dynamic properties of liquid aluminum. We show that the GGA approximation induce more important backscattering effects due to an enhancement of the icosahedral short range order (ISRO) that impact directly dynamic properties like the self-diffusion coefficient. All these results are then used to test the Stokes-Einstein relation and the universal scaling law relating the diffusion coefficient and the excess entropy of a liquid.

[1]  M. Kramer,et al.  Atomistic comparison of volume-dependent melt properties from four models of aluminum , 2010 .

[2]  N. Jakse,et al.  Prediction of the local structure of liquid and supercooled tantalum , 2004 .

[3]  Jürgen Hafner,et al.  Ab‐initio simulations of materials using VASP: Density‐functional theory and beyond , 2008, J. Comput. Chem..

[4]  Noel Jakse,et al.  Ab initio molecular dynamics simulations of local structure of supercooled Ni. , 2004, The Journal of chemical physics.

[5]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[6]  D. Herlach Metastable Solids from Undercooled Melts , 2006 .

[7]  K. E. Starling,et al.  Equation of State for Nonattracting Rigid Spheres , 1969 .

[8]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[9]  Andreas Meyer,et al.  Self-diffusion in liquid copper as seen by quasielastic neutron scattering , 2010 .

[10]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[11]  B. Sadigh,et al.  Test of the universal scaling law for the diffusion coefficient in liquid metals. , 2000, Physical review letters.

[12]  K. Kelton,et al.  High energy x-ray scattering studies of the local order in liquid Al. , 2011, The Journal of chemical physics.

[13]  H. R. Noori on "Understanding molecular simulations" , 2013 .

[14]  日本鉄鋼協会,et al.  Handbook of physico-chemical properties at high temperatures , 1988 .

[15]  T. Unruh,et al.  Self diffusion in liquid aluminium , 2012 .

[16]  Livio Battezzati,et al.  The viscosity of liquid metals and alloys , 1989 .

[17]  N. Jakse,et al.  Ab initio molecular-dynamics simulations of short-range order in liquid Al80Mn20 and Al80Ni20 alloys. , 2004, Physical review letters.

[18]  M. M. G. Alemany,et al.  Kohn-Shamab initiomolecular dynamics study of liquidAlnear melting , 2004 .

[19]  Evans,et al.  Direct entropy calculation from computer simulation of liquids. , 1989, Physical review. A, General physics.

[20]  Alain Pasturel,et al.  Local order of liquid and supercooled zirconium by ab initio molecular dynamics. , 2003, Physical review letters.

[21]  Marcel H. F. Sluiter,et al.  Structural and dynamic evolution in liquid Au-Si eutectic alloy by ab initio molecular dynamics , 2010 .

[22]  N. Jakse,et al.  Transport properties of liquid nickel near the melting point: An ab initio molecular dynamics study. , 2007, The Journal of chemical physics.

[23]  Y. Rosenfeld Quasi-universal scaling law for atomic transport in simple fluids , 2000 .

[24]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[25]  K. Ho,et al.  Competition between fcc and icosahedral short-range orders in pure and samarium-doped liquid aluminum from first principles , 2011 .

[26]  Mikhail Dzugutov,et al.  A universal scaling law for atomic diffusion in condensed matter , 1996, Nature.

[27]  I. R. Mcdonald,et al.  Simple Liquid Metals , 1990 .

[28]  J. H. R. Clarke,et al.  A comparison of constant energy, constant temperature and constant pressure ensembles in molecular dynamics simulations of atomic liquids , 1984 .

[29]  C. Brooks Computer simulation of liquids , 1989 .

[30]  Philip Ball,et al.  The hidden structure of liquids. , 2014, Nature materials.

[31]  Palmer Transverse-current autocorrelation-function calculations of the shear viscosity for molecular liquids. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[32]  T. Unruh,et al.  Determination of self-diffusion coefficients by quasielastic neutron scattering measurements of levitated Ni droplets , 2008 .

[33]  F. Demmel,et al.  Diffusion in liquid aluminium probed by quasielastic neutron scattering , 2011 .

[34]  Excess entropy, diffusion coefficient, viscosity coefficient and surface tension of liquid simple metals from diffraction data , 2002 .

[35]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[36]  Florian Kargl,et al.  Impact of convective flow on long-capillary chemical diffusion studies of liquid binary alloys , 2013 .

[37]  J. Horbach,et al.  Improvement of computer simulation models for metallic melts via quasielastic neutron scattering: A case study of liquid titanium , 2009 .

[38]  B. Hess Determining the shear viscosity of model liquids from molecular dynamics simulations , 2002 .

[39]  Alan Dinsdale,et al.  The viscosity of aluminium and its alloys--A review of data and models , 2004 .

[40]  A. Inoue Stabilization of metallic supercooled liquid and bulk amorphous alloys , 2000 .

[41]  H. C. Andersen,et al.  Molecular dynamics study of melting and freezing of small Lennard-Jones clusters , 1987 .

[42]  Michael J. Gillan,et al.  First-principles calculation of transport coefficients , 1998 .

[43]  B. Alder,et al.  Generalized transport coefficients for hard spheres , 1983 .

[44]  Ivan Egry,et al.  Reference data for the density and viscosity of liquid aluminum and liquid iron , 2006 .